简介概要

基于PSO-SVM的矿用自卸车举升液压系统故障诊断

来源期刊:矿山机械2016年第5期

论文作者:向秋 王雪梅 倪文波

文章页码:22 - 26

关键词:矿用自卸车;举升液压系统;故障诊断;支持向量机;粒子群优化算法;

摘    要:针对矿用自卸车举升液压系统故障诊断困难的问题,采用一种基于粒子群优化支持向量机的方法对其进行研究。该方法利用粒子群优化算法,对支持向量机参数寻优,从而得到具有最佳分类结果的支持向量机模型。利用AMESim软件建立举升液压系统的仿真模型,并通过模拟溢流阀故障、举升液压缸内泄漏、泵内泄漏3种故障工况,提取故障数据,对该方法进行验证。仿真结果表明,该方法能有效对矿用自卸车举升液压系统这3种故障进行诊断。

详情信息展示

基于PSO-SVM的矿用自卸车举升液压系统故障诊断

向秋,王雪梅,倪文波

西南交通大学机械工程学院

摘 要:针对矿用自卸车举升液压系统故障诊断困难的问题,采用一种基于粒子群优化支持向量机的方法对其进行研究。该方法利用粒子群优化算法,对支持向量机参数寻优,从而得到具有最佳分类结果的支持向量机模型。利用AMESim软件建立举升液压系统的仿真模型,并通过模拟溢流阀故障、举升液压缸内泄漏、泵内泄漏3种故障工况,提取故障数据,对该方法进行验证。仿真结果表明,该方法能有效对矿用自卸车举升液压系统这3种故障进行诊断。

关键词:矿用自卸车;举升液压系统;故障诊断;支持向量机;粒子群优化算法;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号