基于风洞试验和CFD仿真的350 km/h高速铁路飞砟研究

来源期刊:中南大学学报(自然科学版)2020年第12期

论文作者:丁东 井国庆 杜文博 汲生成

文章页码:3546 - 3554

关键词:有砟轨道;飞砟;风洞试验;CFD仿真;空气动力学

Key words:ballasted track; ballast flight; wind tunnel test; CFD simulation; aerodynamics

摘    要:研究350 km/h高速列车作用下,有砟道床表面流场和空气动力特性、道床断面形式对飞砟问题的影响以及小粒径单个道砟的风动特性。构造有砟轨道钢轨—轨枕—道床半边模型并进行风洞试验,同时利用k-ω SST双方程湍流模型和不可压缩三维定常雷诺时均方程(RANS)进行CFD仿真分析。研究结果表明:轨枕盒内部风压存在由正变负的现象,降幅约为300 Pa,最大负风压出现在轨枕背风面和端部,约为-400 Pa;道床中心处负风压大、风速高且相对稳定;距离道床表面越远,负压越大;钢轨附近风压波动大,外侧负压小于内测负压;钢轨两侧轨枕盒内风速变化大且产生小幅度空腔涡流和明显后台阶流动效应;负风压随砟肩堆高增加而增大,50 mm的砟肩增高会引起2%~5%的负风压增幅,为在防治飞砟的同时兼顾轨道结构稳定性,砟肩堆高宜选用100 mm;降低道床顶面位置对其表面风场特性无显著改善,但可减少道砟落在轨枕表面的概率;道砟颗粒在风荷载作用下先发生颤动再发生滚动,轨枕表面、轨道中心和砟肩部位道砟更易发生移动,为防治飞砟应及时清理轨枕表面道砟。

Abstract: Wind flow field and aerodynamic characteristics of the ballasted track bed surface at 350 km/h trains running speed were investigated. The influence of track bed geometry and the ballast particle position on the ballast flight was also analyzed. Wind tunnel tests and the CFD simulation analysis were carried out to study the aerodynamics of rail-sleeper-ballast half model. During the CFD simulation, k-ω SST turbulence model and 3-D steady incompressible RANS equations were used to analyze. The results show that wind pressure between sleeper changes from positive to negative, with the decrease of 300 Pa. The maximum negative air pressure occurs on the leeward side and the end of the sleeper, with about -400 Pa. The center of the ballast bed has higher wind speed, and greater negative pressure. Wind pressure near the rail fluctuates greatly, and the external negative pressure is less than the internal pressure. Wind speed on both sides of the rail varies greatly and produces a small cavity vortex. The higher the ballast shoulder, the greater the wind negative pressure. Ballast shoulder height increase with 50 mm can cause wind negative pressure to increase by 2% to 5%; however, considering ballast flight prevention and track structure stability, 100 mm ballast shoulder is appropriate. Reducing the crib height has no significant improvement on aerodynamics characteristics of the track surface, but it can decrease the probability of ballast particles moving onto the sleeper surface. Under wind load, the ballast particles change from vibration to move. The positions of sleeper surface, track center and ballast shoulder easily have ballast movement. Therefore, in order to prevent ballast flight, a regular cleaning measure is necessary.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号