C/E复合材料声发射信号小波分析及人工神经网络模式识别
来源期刊:宇航材料工艺2001年第1期
论文作者:刘哲军 金周庚 王健
关键词:C/E复合材料; 声发射; 小波分析; 人工神经网络; 模式识别;
摘 要:以复合材料为对象,以宽频带传感器及线阵列方式对各类模式试样采集了波形及信号参数,比较波形、信号参数、频谱及小波谱的特征,筛选出六类1300个样本,采用多分辨小波变换提取了5个特征向量,实现了特征空间的降维处理,采用B—P型反向传播神经网络构成了智能化模式分类器,研究了网络模型的学习效果和对与复合材料主要损伤机制有关的六类声发射信号的识别能力。试验结果表明,神经网络对六类信号的平均正确识别率达到90.4%。最佳识别率为97.2%。该方法成功用于90°、0°光滑和0°缺口三种试样的破坏过程分析,获得了满意的效果。
刘哲军1,金周庚1,王健1
(1.航天材料及工艺研究所)
摘要:以复合材料为对象,以宽频带传感器及线阵列方式对各类模式试样采集了波形及信号参数,比较波形、信号参数、频谱及小波谱的特征,筛选出六类1300个样本,采用多分辨小波变换提取了5个特征向量,实现了特征空间的降维处理,采用B—P型反向传播神经网络构成了智能化模式分类器,研究了网络模型的学习效果和对与复合材料主要损伤机制有关的六类声发射信号的识别能力。试验结果表明,神经网络对六类信号的平均正确识别率达到90.4%。最佳识别率为97.2%。该方法成功用于90°、0°光滑和0°缺口三种试样的破坏过程分析,获得了满意的效果。
关键词:C/E复合材料; 声发射; 小波分析; 人工神经网络; 模式识别;
【全文内容正在添加中】