简介概要

Numerical analysis of behavior of active layer in rotary kilns by discrete element method

来源期刊:中南大学学报(英文版)2013年第3期

论文作者:XIE Zhi-yin(谢知音) FENG Jun-xiao(冯俊小)

文章页码:634 - 639

Key words:rotary kiln; particle motion; discrete element method; active layer

Abstract: The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications. To obtain its influences on industrial process, different regimes of particle motion have been simulated by discrete element method (DEM) in three dimensions under variant rotation speeds, filling degree, based on the background of induration process of iron ore pellets. The influences of the mentioned factors on the maximum thickness of the active layer and the average velocity of particles have been investigated. The average velocity of particles increases with Froude number following the power function over a wide range, and the maximum thickness rises with increasing rotation speed in a way of logarithm. The influence of the filling degree f on the maximum thickness exhibits a good linearity under two classic regimes, but the increasing of the average velocity of the active layer is limited at f=0.4. This basic research highlights the impact of the active layer within rotary kilns, and lays a good foundation for the further investigation in mixing and heat transfer within the particle bed inside rotary kilns.

详情信息展示

Numerical analysis of behavior of active layer in rotary kilns by discrete element method

XIE Zhi-yin(谢知音)1, FENG Jun-xiao(冯俊小)2

(1. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2. Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry,
Beijing 100083, China)

Abstract:The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications. To obtain its influences on industrial process, different regimes of particle motion have been simulated by discrete element method (DEM) in three dimensions under variant rotation speeds, filling degree, based on the background of induration process of iron ore pellets. The influences of the mentioned factors on the maximum thickness of the active layer and the average velocity of particles have been investigated. The average velocity of particles increases with Froude number following the power function over a wide range, and the maximum thickness rises with increasing rotation speed in a way of logarithm. The influence of the filling degree f on the maximum thickness exhibits a good linearity under two classic regimes, but the increasing of the average velocity of the active layer is limited at f=0.4. This basic research highlights the impact of the active layer within rotary kilns, and lays a good foundation for the further investigation in mixing and heat transfer within the particle bed inside rotary kilns.

Key words:rotary kiln; particle motion; discrete element method; active layer

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号