简介概要

Novel nanoporous binary Ag-Ni electrocatalysts for hydrazine oxidation

来源期刊:Rare Metals2010年第1期

论文作者:YI Qingfeng, LI Lei, YU Wenqiang, LIU Xiaoping, ZHOU Zhihua, and NIE Huidong School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan , China

文章页码:26 - 31

摘    要:From an aqueous mixture of Ag(I)-EDTA complex and Ni(II) nitrate, silver and nickel particles were co-deposited on the surface of titanium substrates by the hydrothermal method using hydrazine hydrate as a reduction agent. The prepared titanium-supported nano-scale Ag and Ag-Ni particles (nano Ag/Ti, nano Ag86Ni14/Ti, nano Ag77Ni23/Ti, and nano Ag74Ni26/Ti) exhibit nanoporous 3D network textures. Their electrocatalytic activity towards hydrazine oxidation in alkaline solutions was evaluated by cyclic voltammetry and chronoamperometry. The results show that the four samples present a low onset potential of ca. -0.60 V vs. SCE and considerably high and stable anodic current densities for hydrazine oxidation. Among them, the nano Ag86Ni14/Ti electrode exhibits the highest anodic current density towards hydrazine oxidation, showing an increment of electro-active sites on the nano Ag86Ni14/Ti due to the addition of Ni to Ag particles.

详情信息展示

Novel nanoporous binary Ag-Ni electrocatalysts for hydrazine oxidation

YI Qingfeng, LI Lei, YU Wenqiang, LIU Xiaoping, ZHOU Zhihua, and NIE Huidong School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

摘 要:From an aqueous mixture of Ag(I)-EDTA complex and Ni(II) nitrate, silver and nickel particles were co-deposited on the surface of titanium substrates by the hydrothermal method using hydrazine hydrate as a reduction agent. The prepared titanium-supported nano-scale Ag and Ag-Ni particles (nano Ag/Ti, nano Ag86Ni14/Ti, nano Ag77Ni23/Ti, and nano Ag74Ni26/Ti) exhibit nanoporous 3D network textures. Their electrocatalytic activity towards hydrazine oxidation in alkaline solutions was evaluated by cyclic voltammetry and chronoamperometry. The results show that the four samples present a low onset potential of ca. -0.60 V vs. SCE and considerably high and stable anodic current densities for hydrazine oxidation. Among them, the nano Ag86Ni14/Ti electrode exhibits the highest anodic current density towards hydrazine oxidation, showing an increment of electro-active sites on the nano Ag86Ni14/Ti due to the addition of Ni to Ag particles.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号