基于神经网络的严反馈块非线性系统的鲁棒控制
来源期刊:控制与决策2004年第7期
论文作者:胡云安 晋玉强 张友安 崔平远
文章页码:808 - 812
关键词:块非线性系统;鲁棒控制;非匹配不确定性;全调节RBF神经网络;反演;
摘 要:针对非匹配不确定性的严反馈块非线性系统,基于神经网络提出一种鲁棒控制方法.利用Lyapunov稳定性定理推导出RBF神经网络的全调节律,用于处理系统中的非线性参数不确定性,提高了神经网络的在线逼近能力;采用神经网络和鲁棒控制方法,利用已知信息的同时,对控制系数矩阵未知时的设计问题进行处理,避免了控制器可能的奇异问题;引入非线性跟踪微分器,解决了Backstepping设计中的"计算膨胀"问题.运用Lyapunov稳定性定理证明了闭环系统的所有信号均最终一致有界.
胡云安,晋玉强,张友安,崔平远
摘 要:针对非匹配不确定性的严反馈块非线性系统,基于神经网络提出一种鲁棒控制方法.利用Lyapunov稳定性定理推导出RBF神经网络的全调节律,用于处理系统中的非线性参数不确定性,提高了神经网络的在线逼近能力;采用神经网络和鲁棒控制方法,利用已知信息的同时,对控制系数矩阵未知时的设计问题进行处理,避免了控制器可能的奇异问题;引入非线性跟踪微分器,解决了Backstepping设计中的"计算膨胀"问题.运用Lyapunov稳定性定理证明了闭环系统的所有信号均最终一致有界.
关键词:块非线性系统;鲁棒控制;非匹配不确定性;全调节RBF神经网络;反演;