Color image segmentation using mean shift and improved ant clustering

来源期刊:中南大学学报(英文版)2012年第4期

论文作者:刘玲星 谭冠政 M. Sami Soliman

文章页码:1040 - 1048

Key words:color image segmentation; improved ant clustering; graph partition; mean shift

Abstract:

To improve the segmentation quality and efficiency of color image, a novel approach which combines the advantages of the mean shift (MS) segmentation and improved ant clustering method is proposed. The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm, and then they are represented by a graph in which every region is represented by a node. In order to solve the graph partition problem, an improved ant clustering algorithm, called similarity carrying ant model (SCAM-ant), is proposed, in which a new similarity calculation method is given. Using SCAM-ant, the maximum number of items that each ant can carry will increase, the clustering time will be effectively reduced, and globally optimized clustering can also be realized. Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm, the computational complexity is greatly reduced. Experiments show that the proposed method can realize color image segmentation efficiently, and compared with the conventional methods based on the image pixels, it improves the image segmentation quality and the anti-interference ability.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号