基于自适应模糊网络的在线辨识
来源期刊:控制工程2005年第5期
论文作者:喻英 阮学斌
文章页码:426 - 863
关键词:一阶Sugeno;ANFIS;混合学习算法;在线辨识;
摘 要:研究了基于一阶Sugeno的自适应网络模糊推理系统(ANFIS)进行在线辨识的方法。给出了该自适应网络的结构,在此基础上给出了网络权值的修正算法,即综合最陡下降法和最小二乘法得到的一种混合学习算法。对一个非线性模型进行了数字仿真,得到的在线辨识的结果优于采用反传算法的普通神经网络辨识方法。由此证明,一阶Sugeno模糊推理模型和混合学习算法的采用,使得该辨识方法具备网络结构简单、收敛速度快的优势,便于工程实现。
喻英,阮学斌
摘 要:研究了基于一阶Sugeno的自适应网络模糊推理系统(ANFIS)进行在线辨识的方法。给出了该自适应网络的结构,在此基础上给出了网络权值的修正算法,即综合最陡下降法和最小二乘法得到的一种混合学习算法。对一个非线性模型进行了数字仿真,得到的在线辨识的结果优于采用反传算法的普通神经网络辨识方法。由此证明,一阶Sugeno模糊推理模型和混合学习算法的采用,使得该辨识方法具备网络结构简单、收敛速度快的优势,便于工程实现。
关键词:一阶Sugeno;ANFIS;混合学习算法;在线辨识;