简介概要

MEVVA磁过滤等离子技术制备的Fe纳米颗粒薄膜结构

图书来源:二元合金相图及中间相晶体结构 二元合金相图及中间相晶体结构

作 者:唐仁政 田荣璋

出版时间:2009-05

定 价:320元

图书ISBN:978-7-81105-831-4

出版单位:中南大学出版社

详情信息展示

Preparation of Pt/C Nanocatalysts by Ethylene Glycol Method in Weakly Acidic Solutions

Feng Wu1,2), Yanhong Liu1) and Chuan Wu1,2) 1) School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, China 2) National Development Center for High Technology Green Materials, Beijing 100081, China

摘 要:Pt/C catalysts were prepared by ethylene glycol (EG) method in weakly acidic solutions adjusted by sodium citrate (Na3Cit), sodium acetate (NaAc) and sodium hydroxide (NaOH), separately. The effects of alkalizing agent, pH and temperature were investigated by transmission electron microscopy (TEM) and CV. The composition and structure of Pt/C catalyst prepared at optimal conditions of 140℃ and pH=6.7 adjusted by Na3Cit was further characterized by X-ray photoelectron microscopy (XPS) and X-ray diffraction (XRD), respectively. The average particle size of Pt/C catalyst prepared using Na3Cit is 2.1 nm, smaller than that of Pt/C catalyst (2.9 nm) prepared using NaAc, much smaller than that of Pt/C catalyst (100 nm) prepared using NaOH. The electrocatalytic activity of Pt/C catalysts prepared using Na3Cit and NaAc for ethanol oxidation are 456.6 and 419.2 mA/mgPt, comparative to those of Pt/C catalyst prepared by typical EG method and commercial E-TEK Pt/C catalyst. Finally, the size control mechanism of Pt nanoparticles was discussed.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号