DOI:10.19476/j.ysxb.1004.0609.2017.05.006
冷却方式对TC21钛合金绝热剪切敏感性的影响
杨红斌1, 2,向文丽2,徐 媛2,孙 坤2
(1. 云南师范大学 物理与电子信息学院,昆明 650500;
2. 楚雄师范学院 材料制备及力学行为研究所,楚雄 675000)
摘 要:采用分离式Hopkinson Bar技术,对热处理后经3种冷却方式的TC21钛合金帽形试样进行动态剪切试验,结合宏观力学响应及微观形貌分析,研究冷却方式对TC21钛合金绝热剪切敏感性的影响。结果表明:热处理后的冷却方式对TC21钛合金在高应变率下的绝热剪切敏感性有较大影响;在相同应变率下,水冷试样的绝热剪切敏感性最高,炉冷试样的其次,空冷试样的最低;在4300 s-1应变率下,水冷试样开裂程度较为严重,裂纹不仅在剪切带中延伸,还在基体中大幅度扩展,绝热剪切带最短、最窄;炉冷试样中裂纹尖端较为尖锐,且沿剪切带呈现了进一步扩展的趋势;空冷试样开裂程度较弱,裂纹没有呈现出进一步扩展的迹象,剪切带最长且最宽。
关键词:TC21钛合金;冷却方式;剪切敏感性;绝热剪切带;裂纹
文章编号:1004-0609(2017)-05-0920-07 中图分类号:TG146.2 文献标志码:A
钛及钛合金具有熔点高、密度小、比强度高、耐腐蚀等优点,已经成为航空航天领域重要的结构材料[1-2]。由于钛合金的导热性能较差,在高应变率加载下极易发生绝热剪切破坏[3-8],因此钛合金在高应变率下的绝热剪切失效行为一直是人们最为关注的问题[9-15]。研究表明[16-19],不同组织状态的钛合金,其绝热剪切敏感性也不同。众所周知,通过不同热处理方法可改变合金的组织形貌,同时也改变了钛合金的绝热剪切敏感性。但迄今为止,对不同冷却方式下所得钛合金的绝热剪切敏感性研究还鲜有报道。
本试验中对TC21钛合金进行热处理,以不同方式冷却,采用分离式Hopkinson Bar技术对所得材料试样进行高应变率剪切试验,结合试验材料宏观力学响应与微观形貌分析,研究不同冷却方式对TC21钛合金绝热剪切敏感性的影响。
1 实验
1.1 试验材料及其处理方法
试验用TC21钛合金是由西北有色金属研究院提供的d13.8 mm棒材,其初始组织由等轴初生α相及β转变组织组成(见图1),化学成分如表1所示,其相变点为(960±5) ℃。本试验中采用以下3种热处理制度:A制度为(910 ℃,1 h,AC)+(570 ℃,4 h,AC),B制度为(910 ℃,1 h,FC)+(570 ℃,4 h,AC),C制度为(910 ℃,1 h,WQ)+(570 ℃,4 h,AC)。其中:AC为空冷,FC为炉冷,WQ为水冷。
图1 试样原始组织
Fig. 1 Original structure of specimen
1.2 试验方法
将热处理后的TC21钛合金材料加工成如图2所示的帽形试样。动态剪切试验采用d14 mm分离式Hopkinson Bar加载装置在室温下进行,其试验原理及试验装置参见文献[20]。采用300 mm撞击杆,打击气压分别为0.09、0.1、0.11和0.12 MPa,相应的名义应变率约为2100、3500、4300和5100 s-1。
表1 TC21钛合金的化学成分
Table 1 Chemical constitution of TC21 titanium alloy (mass fraction, %)
图2 动态剪切试样及尺寸
Fig. 2 Geometrical shape and size of dynamic shearing specimen (Unit: mm)
2 结果与分析
2.1 热处理后的显微组织
TC21钛合金经3种热处理后的显微组织如图3所示。其中图3(a)所示组织采用空冷方式得到,与原始组织相比,组织中等轴α晶粒变细小,且更分散,出现较多的细条状次生α相;图3(b)所示为经炉冷获得的组织,由于冷却过程较为缓慢,原始等轴α晶粒球化长大,晶间转变组织也明显粗化,使得整个组织中α相几乎紧邻,基本看不见β基体;图3(c)所示为水冷条件下所得组织,由等轴状α相晶粒和细小弥散分布的针状马氏体α′混合组织组成,等轴α相的含量相对较少,且较为细小。
图3 不同热处理后的TC21钛合金显微组织
Fig. 3 Microstructures of TC21 titanium alloy after different heat treatments
2.2 试样在高应变率下的绝热剪切敏感性分析
根据一维应力波理论和分离式Hopkinson Bar装置的加载原理,应力波的加载时间为
(1)
式中:L为撞击杆长度,300 mm;C0为弹性杆纵波波速,本试验中用杆为18Ni钢(C0为4900 m/s),由式(1)计算得脉冲宽度约为120 μs。当透射脉冲宽度约为 120 μs时,属于正常卸载,试样无剪切破坏;当透射脉冲宽度小于120 μs,出现突然卸载现象,称为“应力塌陷”,说明试样承载能力下降[21]。
图4所示为3种TC21钛合金试样分别在应变率为2100、3500、4300、5100 s-1时的动态剪切时间-应力曲线。从图4中可看出,在应变率为2100 s-1下,3种试样在应力波加载时间(120 μs)内均未出现应力塌陷,说明3种试样都没有发生剪切破坏;当应变率提高到3500 s-1时,3种试样均出现了应力塌陷,将应变率分别提高到4300 s-1及5100 s-1时,3种试样也均出现了应力塌陷。
图4 不同方式冷却试样在相同应变率下的动态剪切时间-应力曲线
Fig. 4 Time-stress curves of samples obtained by different cooling ways under same strain rate
动态剪切时间-应力曲线表征了试样从动态加载开始到发生绝热剪切破坏的时间历程及承载能力的变化,承载时间越长,表明材料对绝热剪切越不敏感,反之则敏感。3种试样在不同应变率下发生应力塌陷的时间列于表2。
从表2看出,冷却方式对TC21钛合金在高应变率下的承载能力影响显著,在同一应变率下,空冷的TC21钛合金试样的承载时间最长;其次为炉冷试样,水冷试样的承载时间最短。因此,3种冷却方式下所得TC21钛合金,绝热剪切敏感性由低到高依次为空冷试样、炉冷试样和水冷试样。
表2 3种试样在不同应变率下的承载时间
Table 2 Load-bearing time of three types of specimens under different strain rates
冷却方式对TC21钛合金绝热剪切敏感性的影响,是由TC21钛合金经不同方式冷却所得显微组织存在的显著差异所致。研究表明[22],在两相钛合金中,等轴α相具有较强的抗裂纹萌生能力,有利于钛合金塑性和冲击性能的提高。在本试验中,TC21钛合金在空冷和炉冷条件下,组织中含有大量的等轴状α相,彼此之间以及与基体之间取向任意,变形协调能力好,在高应变率加载下,可通过自身的大变形来协调加载过程中的不均匀性,使其具有较好的抗冲击性能。对于水冷条件下的TC21钛合金而言,由于组织中弥散分布的针状马氏体相纵横交错,变形过程中位错容易严重受阻塞积,变形协调能力较差,失效前的均匀动态塑性较小,最先发生剪切破坏,因而表现出相对较高的绝热剪切敏感性。对于炉冷下的试样,组织中α相含量最多,尺寸最大,使其具有较低的强度和较高的塑性,在变形过程中容易发生较大的剪切变形,在一定程度上加剧了局域化变形的程度,因而其剪切敏感性比空冷下的试样高。空冷后的组织中,含有一定量的等轴α相和细针状的次生α相,使其在变形过程中保持了良好的塑性,同时保证了其不易发生较大的局域化变形,避免了严重的变形不均匀和应力集中,因此具有较好的抗绝热剪切失效能力。
2.3 绝热剪切带的微观形貌分析
为了进一步分析材料在高应变率下的绝热剪切敏感性,将动态剪切试验后的帽形试样沿轴线切开,经打磨、抛光、腐蚀后采用Quanta FEG250扫描电子显微镜对3种试样中产生的绝热剪切带进行观察分析。
图5 应变率4300 s-1时3种TC21合金试样中绝热剪切带整体形貌及裂纹尖端局部放大图
Fig. 5 Overall morphologies of adiabatic shear band and its partial enlarged detail of crack tip in three kinds of samples of TC21 alloy at strain rate about 4300 s-1
图5所示为3种试样在应变率为4300 s-1时产生的绝热剪切带整体形貌及裂纹尖端局部放大图。图5(a)所示空冷后的TC21钛合金试样中,剪切带长度约为1.630 mm;图5(c)所示为炉冷试样中的剪切带,约为1.446 mm,图5(e)所示水冷试样中的剪切带最短,约为1.351 mm。图5(b)、(d)、(f)所示分别是图5(a)、(c)、(e)中红框区域裂纹尖端的局部放大图。由图5(b)可看到,空冷试样的剪切带端口处开裂程度较弱,裂纹尖端较钝,无进一步扩展迹象;而图5(d)所示炉冷试样中,裂纹尖端较为尖锐,有沿剪切带进一步扩展的趋势;图5(f)所示水冷试样中,开裂程度较为严重,裂纹不仅在剪切带中延伸,还在基体中大幅度扩展。对比分析表明,正是因为裂纹沿剪切带的扩展程度不同,才导致了不同冷却方式下材料中剪切带长度的差异。因此,在相同应变率下,试样中剪切带越长,说明裂纹扩展缓慢,持久性更强,剪切带越短,说明其裂纹扩展较为剧烈,最先发生剪切失效。
图6所示为3种试样在4300 s-1应变率下产生的绝热剪切带局部放大形貌。从图6可观察到,空冷试样剪切带中呈现出具有方向性的流线,且较为均匀,带宽约为10 μm(见图6(a));炉冷试样剪切带中流线也表现出方向性,但不均匀,带内存在粗大晶粒的变形,带宽为9 μm左右(见图6(b));水冷试剪切带中没有明显的剪切变形流线,带与基体未变形区边界平整,带宽也较为均匀,约为6 μm(见图6(c))。孙坤等[23]的研究表明,在高应变率下,钛合金绝热剪切带的形成是一个萌生、扩展、完全发展的过程,剪切带宽度由窄到宽,最终完全形成。本研究中3种试样在经历相同应变速率变形后,水冷试样中的剪切带最窄,说明其完成这一过程最快,使得试样最先出现剪切破坏;空冷试样中的最宽,说明剪切带完成该过程较为缓慢,延迟了裂纹的出现;炉冷试样中的剪切带相对于空冷试样稍窄,因此其中裂纹扩展稍多。从能量的角度来看,在同一应变速率下,试样获得的能量相同,这一能量使得绝热剪切带不仅在纵向(剪切方向)也在横向(宽度)发展。剪切带窄,说明在横向上吸收较少,局域化变形吸收的大部分能量提供在剪切带纵向扩展,因此在端口处裂纹扩展较多。由此可见,空冷试样的剪切带在纵向上发展较为缓慢,其次为炉冷试样,水冷试样中发展最快,最先发生剪切破坏。
图6 应变率为4300 s-1下3种TC21合金试样中绝热剪切带的局部形貌
Fig. 6 Partial pattern of adiabatic shear band in three kinds of samples of TC21 alloy at strain rate about 4300 s-1
综上所述,在4300 s-1应变率下,水冷试样中的剪切带最短、最窄,局域化变形吸收的大部分能量提供在剪切带纵向扩展,使其裂纹扩展最严重;炉冷试样中的剪切带更长且更宽,但由于带内晶粒之间变形的不均匀,造成裂纹出现了一定的扩展;空冷试样中的剪切带最长、最宽,在横向和纵向上能量的吸收相对更平衡,延迟了裂纹的出现,具有更好的抗绝热剪切性能。由此表明,空冷试样的绝热剪切敏感性较低,其次为炉冷试样,水冷试样的绝热剪切敏感性最高,这一结果与上一节所得结论相一致。
3 结论
1) 冷却方式对TC21钛合金绝热剪切敏感性的影响明显,在同一应变率下,经空冷、炉冷和水冷的TC21钛合金的绝热剪切敏感性由低到高依次为空冷试样、炉冷试样和水冷试样。
2) 在4300 s-1应变率下,经水冷的TC21钛合金试样的绝热剪切带最短,开裂程度较为严重,裂纹不仅在沿剪切带中延伸,还在基体中大幅度扩展;炉冷试样中,裂纹尖端较为尖锐,且沿剪切带呈现了进一步扩展的趋势;空冷试样中的剪切带最长,端口处开裂程度较弱,裂纹尖端较钝,无进一步扩展迹象。
3) 在4300 s-1应变率下,水冷试样中的剪切带最窄,局域化变形吸收的大部分能量提供在剪切带纵向扩展,使其裂纹扩展最严重;对于炉冷试样中的剪切带,在横向上也吸收了较多的能量,扩展了其宽度;空冷试样中的剪切带最宽,较多的能量提供给横向的扩展,在纵向上延迟了裂纹的出现,具有更好的抗绝热剪切性能。
REFERENCES
[1] 赵永庆, 陈永楠, 张学敏, 曾卫东, 王 磊. 钛合金相变及热处理[M]. 长沙: 中南大学出版社, 2012.
ZHAO Yong-qing, CHEN Yong-nan, ZHANG Xue-min, ZENG Wei-dong, WANG Lei. Phase transformation and heat treatment of titanium alloys[M]. Changsha: Central South University Press, 2012.
[2] 李 梁, 孙健科, 孟祥军. 钛合金的应用现状及发展前景[J]. 钛工业进展, 2005, 21(5): 19-24.
LI Liang, SUN Jian-ke, MENG Xiang-jun. Application state and prospects for titanium alloys[J]. TitaniumIndustryProgress, 2005, 21(5): 19-24.
[3] LIAO S, DUFFY J. Adiabatic shear bands in a Ti-6Al-4V titanium alloy[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(11): 2201-2231.
[4] 李 强, 徐永波, 沈乐天, 白以龙. 钛合金(Ti-17)的动态力学性能和损伤特性[J]. 金属学报, 1999, 35(5): 491-494.
LI Qiang, XU Yong-bo, SHEN Le-tian, BAI Yi-long. Dynamic mechanical properties and damage characteristics of titanium alloy(Ti-17)[J]. Acta Metallurgica Sinica, 1999, 35(5): 491-494.
[5] ZHANG Jing, TAN Chen-wen, REN Yu, YU Xiao-dong, MA Hong-lei, WANG Fu-chi, CAI Hong-nian. Adiabatic shear fracture in Ti-6Al-4V alloy[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(11): 2396-2401.
[6] 付应乾, 董新龙, 虎宏智. 准静态和动态加载TA2工业纯钛受迫剪切破坏演化[J]. 中国有色金属学报, 2015, 25(11): 3092-3099.
FU Ying-qian, DONG Xin-long, HU Hong-zhi. Quasi-static and dynamic failure evolution of titanium alloy under forced shear loading[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(11): 3092-3099.
[7] 孙巧艳, 朱蕊花, 刘翠萍, 于振涛. 工业纯钛机械孪晶演化及其对纯钛低温力学性能的影响[J]. 中国有色金属学报, 2006, 16(4): 592-598.
SUN Qiao-yan, ZHU Rui-hua, LIU Cui-ping,YU Zhen-tao. Twinning behaviour and its effect on mechanical behaviour of commercial titanium at cryogenic temperature[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(4): 592-598.
[8] 许 峰, 张喜燕, 程佑铭. 动态塑性变形纯钛的绝热剪切带研究[J]. 稀有金属材料与工程, 2013, 42(4): 801-804.
XU Feng, ZHANG Xi-yan, CHENG You-ming. Study on adiabatic shear band in pure titanium subjected to dynamic plastic deformation[J]. Rare Metal Materials and Engineering, 2013, 42(4): 801-804.
[9] 董新龙, 付应乾. TA2钛合金动态压缩试样中的绝热剪切破坏研究[J]. 兵工学报, 2014, 35(7): 1016-1020.
DONG Xin-long, FU Ying-qian. Experimental and numerical study of adiabatic shear failure of TA2 titanium alloy under dynamic compression[J]. Acta Armamentarii, 2014, 35(7): 1016-1020.
[10] 尤振平, 叶文君, 惠松骁, 于 洋, 王希哲, 张 翥. TB10钛合金的动态力学性能及绝热剪切分析[J]. 稀有金属, 2008, 32(6): 799-802.
YOU Zhen-ping, YE Wen-jun, HUI Song-xiao, YU Yang, WANG Xi-zhe, ZHANG Zhu. Study on dynamic mechanical properties and adiabatic shearing of TB10 titanium alloy[J]. Chinese Journal of Rare Metals, 2008, 32(6): 799-802.
[11] 张长清, 谢兰生, 陈明和, 商国强. 高应变率下TC4-DT钛合金的动态力学性能及塑性本构关系[J]. 中国有色金属学报, 2015, 25(2): 323-329.
ZHANG Chang-qing, XIE Lan-sheng, CHEN Ming-he, SHANG Guo-qiang. Dynamic mechanical property and plastic constitutive relation of TC4-DT Ti alloy under high strain rate[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(2): 323-329.
[12] 孙 智, 苏铁健, 李淑华, 王富耻. 高应变率下工业纯钛TA2变形与失效研究[J]. 兵器材料科学与工程, 2007, 30(3): 43-48.
SUN Zhi, SU Tie-jian, LI Shu-hua, WANG Fu-chi. Study on deformation and failure of TA2 under compressive load at high strain rate[J]. Ordnance Material Science and Engineering, 2007, 30(3): 43-48.
[13] CHICHILI D R, RAMESH K T, HEMKER K J. Adiabatic shear localization in α-titanium: experiments, modeling and microstructural evolution[J]. Journal of the Mechanics and Physics of Solids, 2004, 52(8): 1889-1909.
[14] PEIRS J, TIRRY W, AMIN-AHMADI B, COGHE F, VERLEYSEN P, RABET L, SCHRYVERS D, DEGRIECK J. Microstructure of adiabatic shear bands in Ti6Al4V[J]. Materials Characterization, 2013, 75: 79-92.
[15] RANC N, TARAVELLA L, PINA V, HERVE P. Temperature field measurement in titanium alloy during high strain rate loading—Adiabatic shear bands phenomenon[J]. Mechanics of Materials, 2008, 40(4): 255-270.
[16] 孙 坤, 程兴旺, 王富耻, 苗 普, 赵双赞. 组织及应变率对TC6钛合金绝热剪切敏感性的影响[J]. 稀有金属材料与工程, 2008, 37(10): 1856-1860.
SUN Kun, CHENG Xing-wang, WANG Fu-chi, MIAO Pu, ZHAO Shuang-zan. Study on sensitivity of adiabatic shear of TC6 alloy under different strain rate and morphology[J]. Rare Metal Materials and Engineering, 2008, 37(10): 1856-1860.
[17] 李建崇, 李树奎, 范群波, 霍咚梅, 刘 杰. 微观组织对Ti-6Al-4V-4Zr-1.5Mo合金绝热剪切敏感性的影响[J]. 稀有金属材料与工程, 2012, 41(1): 45-48.
LI Jian-chong, LI Shu-kui, FAN Qun-bo, HUO Dong-mei, LIU Jie. Effects of microstructure on the adiabatic shear banding sensitivity of Ti-6Al-4V-4Zr-Mo alloy[J]. Rare Metal Materials and Engineering, 2012, 41(1): 45-48.
[18] 刘清华, 惠松骁, 叶文君, 王 国, 胡光山. 不同组织状态TC4ELI钛合金动态力学性能研究[J]. 稀有金属, 2012, 36(4): 515-517.
LIU Qing-hua, HUI Song-xiao, YE Wen-jun, WANG Guo, HU Guang-shan. Dynamic mechanical properties of TC4ELI titanium in different microstructure states[J]. Chinese Journal of Rare Metals, 2012, 36(4): 515-517.
[19] 谭成文, 刘新芹, 陈志永, 马红磊, 王富耻, 才鸿年. Ti-6Al-4V合金绝热剪切敏感性与临界破碎速度关系研究[J]. 稀有金属材料与工程, 2008, 37(8): 1400-1402.
TAN Cheng-wen, LIU Xin-qin, CHEN Zhi-yong, MA Hong-lei, WANG Fu-chi, CAI Hong-nian. Study on the relationship between adiabatic shear susceptivity and critical fracture velocity for Ti-6Ai-4V alloy[J]. Rare Metal Materials and Engineering, 2008, 37(8): 1400-1402.
[20] 胡时胜, 邓德涛, 任小彬. 材料冲击拉伸实验的若干问题探讨[J]. 实验力学, 1998, 13(1): 9-14.
HU Shi-sheng, DENG De-tao, REN Xiao-bin. A study on impact tensile test of materials[J]. Journal of Experimental Mechanics, 1998, 13(1): 9-14.
[21] 孙 坤, 徐 媛, 自兴发, 刘瑞明. TC6 钛合金变形组织不同取向绝热剪切敏感性研究[J]. 稀有金属材料与工程, 2011, 40(10): 1795-1798.
SUN Kun, XU Yuan, ZI Xing-fa, LIU Rui-ming. Study on susceptibility of different directions of deformed contexture of TC6 titanium alloy to adiabatic shearing[J]. Rare Metal Materials and Engineering, 2011, 40(10): 1795-1798.
[22] 曹京霞, 方 波, 黄 旭, 李臻熙. 微观组织对TA15钛合金力学性能的影响[J]. 稀有金属, 2004, 28(2): 362-364.
CAO Jing-xia, FANG Bo, HUANG Xun, LI Zhen-xi. Effects of microstructure on properties of TA15 titanium alloy[J]. Chinese Journal of Rare Metals, 2004, 28(2): 362-364.
[23] 孙 坤, 王富耻, 程兴旺, 苗 普, 赵双赞. TC6钛合金绝热剪切带不同发展阶段的精细结构[J]. 稀有金属材料与工程, 2009, 38(2): 233-236.
SUN Kun,WANG Fu-chi, CHENG Xing-wang, MIAO Pu, Zhao Shuang-zan. Fine structure of adiabatic shear band of TC6 alloy under diferent evolvement stages[J]. Rare Metal Materials and Engineering, 2009, 38(2): 233-236.
Effect of cooling ways on adiabatic shear sensitivity of TC21 titanium alloy
YANG Hong-bin1, 2, XIANG Wen-li2, XU Yuan2, SUN Kun2
(1. School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China;
2. Research Institute on Preparation and Mechanical Behavior of Materials, Chuxiong Normal University, Chuxiong 675000, China)
Abstract: Using the technology of split Hopkinson Bar,the dynamic shear test on the hat-shape samples of TC21 titanium alloy, which was cooled separately by three cooling ways after heat treatment, was done, and the effects of cooling ways on adiabatic shear sensitivity of TC21 titanium alloy were studied by combining the dynamic mechanical response with the microstructural analysis of samples. The results show that the cooling ways of the alloy after heat treatment has great influence on the adiabatic shearing sensitivity of the TC21 titanium alloy. Under the same condition of strain rate, the subsequence of the adiabatic shearing sensitivity is water quenching samples, furnace cooling samples and air-cooling samples in turn according to sort in descending. At the strain rate of 4300 s-1, the sample by water quenching has the shortest and the most narrow adiabatic shear band. And its degree of cracking is the most severe among three kinds of samples. The crack expands not only along the shear band, but also in the matrix. The crack tip is sharper in the sample by furnace cooling, and takes on the expanding tendency along the shear band. The sample by air-cooling has the longest and the widest adiabatic shear band. Its degree of cracking is weak.
Key words: TC21 titanium alloy; cooling way; shear sensitivity; adiabatic shear band; crack
Foundation item: Project(51561002) supported by the National Natural Science Foundation of China; Project (2011FZ185) supported by the Applied Basic Research of Yunnan, China
Received date: 2015-12-15; Accepted date: 2016-08-10
Corresponding author: SUN Kun; Tel: +86-13638702095; E-mail: sunkun@cxtc.edu.cn
(编辑 何学锋)
基金项目:国家自然科学基金资助项目(51561002);云南省应用基础研究计划资助项目(2011FZ185)
收稿日期:2015-12-15;修订日期:2016-08-10
通信作者:孙 坤,教授,博士;电话:13638702095;E-mail:sunkun@cxtc.edu.cn