简介概要

矿井突水水源判别的ESN正则化模型

来源期刊:煤田地质与勘探2018年第1期

论文作者:李垣志 牛国庆 张轩轩

文章页码:108 - 114

关键词:突水水源判别;回声状态网络;正则化;奇异分解;交叉验证;

摘    要:针对标准回声状态神经网络(ESN)因病态解而导致水源判别模型准确率低,精度差的问题,提出了将6种正则化方法与ESN神经网络相结合,并应用于矿井突水水源的判别,与标准ESN模型的判别结果进行对比分析。结果表明:ESN模型易出现过拟合问题,判别准确率只有49%~88%;而采用阻尼最小二乘奇异分解法(DSVD)与广义交叉验证法(GCV)相耦合的正则化方法能够较好的解决模型病态解问题,使模型的准确率提高到100%,最佳判别精度比标准ESN模型提高了64%,稳定性提高了61%;且该方法对不同规模的储备池结构表现出较强的适应性,不仅简化了模型的映射关系,提高计算效率,还增强模型的泛化能力。因此,基于GSVD_GCV正则化的ESN水源判别模型可作为一种快速有效判别矿井突水来源的新方法。

详情信息展示

矿井突水水源判别的ESN正则化模型

李垣志,牛国庆,张轩轩

河南理工大学安全科学与工程学院

摘 要:针对标准回声状态神经网络(ESN)因病态解而导致水源判别模型准确率低,精度差的问题,提出了将6种正则化方法与ESN神经网络相结合,并应用于矿井突水水源的判别,与标准ESN模型的判别结果进行对比分析。结果表明:ESN模型易出现过拟合问题,判别准确率只有49%~88%;而采用阻尼最小二乘奇异分解法(DSVD)与广义交叉验证法(GCV)相耦合的正则化方法能够较好的解决模型病态解问题,使模型的准确率提高到100%,最佳判别精度比标准ESN模型提高了64%,稳定性提高了61%;且该方法对不同规模的储备池结构表现出较强的适应性,不仅简化了模型的映射关系,提高计算效率,还增强模型的泛化能力。因此,基于GSVD_GCV正则化的ESN水源判别模型可作为一种快速有效判别矿井突水来源的新方法。

关键词:突水水源判别;回声状态网络;正则化;奇异分解;交叉验证;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号