基于遗传优化规则库的电力变压器故障诊断

来源期刊:中南大学学报(自然科学版)2013年第3期

论文作者:曾利平 姚洪涛 谢秀芬

文章页码:1018 - 1023

关键词:电力变压器;模糊诊断系统;遗传算法;自举法

Key words:power transformers; fuzzy diagnosis system; genetic algorithm; bootstrapping

摘    要:提出基于遗传算法优化模糊规则库的故障诊断方法,采用模糊故障诊断系统对电力变压器的初期故障进行检测或诊断。采用遗传算法产生优化的模糊规则库,针对缺少数据样本的情况,采用自举法对数据样本进行处理及扩充,使得不同的故障类型有相等的样本数。仿真结果表明:该故障诊断方法提高了故障诊断精度和正确率,对于电力变压器故障诊断有效、可行。

Abstract: A fault diagnosis technology was presented based on the rule base by optimized genetic algorithm. The fuzzy diagnosis system was employed to detect incipient faults for power transformers. Genetic algorithm was used to obtain the optimized fuzzy rule. For the missing sample data, the bootstrapping technology was introduced to process and expand data samples so that different faults have equivalent samples. The simulation results show that the proposed method improves the accuracy of faults diagnosis and increases the diagnostic correct rate of the fault, and it is effective and feasible.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号