简介概要

基于耗散理论的机器人神经网络鲁棒控制

来源期刊:控制工程2010年第6期

论文作者:王洪瑞 刘聪娜 张永兴

文章页码:853 - 855

关键词:机器人;无源性;耗散性;神经网络;

摘    要:为了更好地解决机器人系统中存在的参数不确定和外部干扰的鲁棒控制问题,提出一种基于耗散性理论的神经网络自适应鲁棒控制器,首先应用无源性理论对名义模型设计镇定控制器,然后利用RBF神经网络自适应学习系统的不确定部分,将神经网络逼近误差作为外部干扰,基于H∞控制理论使干扰对系统输出的影响抑制到所要求的最小程度,并用Lyapunov稳定性理论推导出RBF神经网络的权重矩阵调节律以及相关的鲁棒控制器,证明了系统的全局稳定性。仿真结果表明,这种控制器对机器人系统可能受到的干扰具有较好的抑制能力,提高了系统的鲁棒性,实现了系统轨迹的快速准确跟踪,又能很好地消除控制器的抖振,进而提高机器人工作性能。

详情信息展示

基于耗散理论的机器人神经网络鲁棒控制

王洪瑞1,2,刘聪娜1,张永兴1

1. 燕山大学工业计算机控制工程河北省重点实验室2. 河北大学电子信息工程学院

摘 要:为了更好地解决机器人系统中存在的参数不确定和外部干扰的鲁棒控制问题,提出一种基于耗散性理论的神经网络自适应鲁棒控制器,首先应用无源性理论对名义模型设计镇定控制器,然后利用RBF神经网络自适应学习系统的不确定部分,将神经网络逼近误差作为外部干扰,基于H∞控制理论使干扰对系统输出的影响抑制到所要求的最小程度,并用Lyapunov稳定性理论推导出RBF神经网络的权重矩阵调节律以及相关的鲁棒控制器,证明了系统的全局稳定性。仿真结果表明,这种控制器对机器人系统可能受到的干扰具有较好的抑制能力,提高了系统的鲁棒性,实现了系统轨迹的快速准确跟踪,又能很好地消除控制器的抖振,进而提高机器人工作性能。

关键词:机器人;无源性;耗散性;神经网络;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号