简介概要

一种异步电动机故障诊断新方法

来源期刊:工矿自动化2014年第3期

论文作者:郭西进 徐进霞 孔利利

文章页码:60 - 63

关键词:异步电动机;故障诊断;RBF神经网络;差分进化算法;主元分析;小波包分析;小波变换;

摘    要:针对基于RBF神经网络的异步电动机故障诊断方法存在参数确定较困难的问题,提出了一种基于差分进化算法优化RBF神经网络的异步电动机故障诊断方法。首先采用小波变换对异步电动机运行状态信号进行消噪处理,然后采用主元分析法与小波包分析法相结合方式提取消噪后的异步电动机运行状态信号特征,最后采用差分进化算法优化后的RBF神经网络对异步电动机运行状态信号特征进行诊断。实验结果表明,与未优化的RBF神经网络相比,采用差分进化算法优化后的RBF神经网络可有效识别出异步电动机故障。

详情信息展示

一种异步电动机故障诊断新方法

郭西进,徐进霞,孔利利

中国矿业大学信息与电气工程学院

摘 要:针对基于RBF神经网络的异步电动机故障诊断方法存在参数确定较困难的问题,提出了一种基于差分进化算法优化RBF神经网络的异步电动机故障诊断方法。首先采用小波变换对异步电动机运行状态信号进行消噪处理,然后采用主元分析法与小波包分析法相结合方式提取消噪后的异步电动机运行状态信号特征,最后采用差分进化算法优化后的RBF神经网络对异步电动机运行状态信号特征进行诊断。实验结果表明,与未优化的RBF神经网络相比,采用差分进化算法优化后的RBF神经网络可有效识别出异步电动机故障。

关键词:异步电动机;故障诊断;RBF神经网络;差分进化算法;主元分析;小波包分析;小波变换;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号