简介概要

基于记忆模式的NO_x支持向量回归预测研究

来源期刊:控制工程2012年第4期

论文作者:黄景涛 罗威 任志伟 茅建波

文章页码:704 - 708

关键词:锅炉燃烧;记忆模式;重采样;支持向量回归;

摘    要:低NO_x排放是电站锅炉燃烧优化的主要目标之一,影响燃煤锅炉NO_x排放因素众多且复杂,对锅炉燃烧过程NO_x浓度进行准确预测是低NO_x燃烧优化的基础。机组全工况运行时表现出强时变性,静态预测模型难以保证预测精度,考虑到观测样本的时效性,模拟记忆模式对观测数据进行重采样,进而基于支持向量回归算法构建NO_x排放预测模型,构造一种基于记忆模式的支持向量回归算法。以某机组热态试验数据为基础,对算法进行了仿真分析,结果表明,该算法在保证回归建模精度的同时,在训练速度、稳定性以及泛化性能等方面较传统支持向量回归算法更有优势。

详情信息展示

基于记忆模式的NO_x支持向量回归预测研究

黄景涛1,罗威1,任志伟1,茅建波2

1. 河南科技大学电子信息工程学院2. 浙江省电力试验研究院

摘 要:低NO_x排放是电站锅炉燃烧优化的主要目标之一,影响燃煤锅炉NO_x排放因素众多且复杂,对锅炉燃烧过程NO_x浓度进行准确预测是低NO_x燃烧优化的基础。机组全工况运行时表现出强时变性,静态预测模型难以保证预测精度,考虑到观测样本的时效性,模拟记忆模式对观测数据进行重采样,进而基于支持向量回归算法构建NO_x排放预测模型,构造一种基于记忆模式的支持向量回归算法。以某机组热态试验数据为基础,对算法进行了仿真分析,结果表明,该算法在保证回归建模精度的同时,在训练速度、稳定性以及泛化性能等方面较传统支持向量回归算法更有优势。

关键词:锅炉燃烧;记忆模式;重采样;支持向量回归;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号