简介概要

基于多域流形的行星齿轮箱局部故障识别

来源期刊:工程科学学报2017年第5期

论文作者:赵川 冯志鹏

文章页码:769 - 777

关键词:行星齿轮箱;故障识别;局部均值分解;本征维数估计;多域流形;

摘    要:行星齿轮箱振动信号包含多种频率成分和噪声干扰,频谱具有复杂的边带结构,容易对故障识别造成误导甚至引起错判.在不同故障状态下,行星齿轮箱振动信号的多域特征量将偏离正常范围且偏离程度不同,根据这一特点,提取振动信号的时域、频域特征参量用于故障识别.为了避免传统分析方法中负频率及虚假模态问题,增强对噪声干扰的鲁棒性,采用局部均值分解法将信号自适应地分解为单分量之和,提取时频域单分量瞬时幅值能量.针对多域特征空间构造过程中出现的高维及非线性问题,采用流形学习对数据进行降维处理.提出基于改进的虚假近邻点的本征维数估计及最优k邻域确定方法,并通过等距映射对多域特征空间进行降维分析.对于行星齿轮箱实验信号,根据样本流形特征聚类结果,分别识别出了太阳轮、行星轮和齿圈的局部故障,从而验证了上述方法的有效性.

详情信息展示

基于多域流形的行星齿轮箱局部故障识别

赵川,冯志鹏

北京科技大学机械工程学院

摘 要:行星齿轮箱振动信号包含多种频率成分和噪声干扰,频谱具有复杂的边带结构,容易对故障识别造成误导甚至引起错判.在不同故障状态下,行星齿轮箱振动信号的多域特征量将偏离正常范围且偏离程度不同,根据这一特点,提取振动信号的时域、频域特征参量用于故障识别.为了避免传统分析方法中负频率及虚假模态问题,增强对噪声干扰的鲁棒性,采用局部均值分解法将信号自适应地分解为单分量之和,提取时频域单分量瞬时幅值能量.针对多域特征空间构造过程中出现的高维及非线性问题,采用流形学习对数据进行降维处理.提出基于改进的虚假近邻点的本征维数估计及最优k邻域确定方法,并通过等距映射对多域特征空间进行降维分析.对于行星齿轮箱实验信号,根据样本流形特征聚类结果,分别识别出了太阳轮、行星轮和齿圈的局部故障,从而验证了上述方法的有效性.

关键词:行星齿轮箱;故障识别;局部均值分解;本征维数估计;多域流形;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号