Radiative squeezing flow of unsteady magneto-hydrodynamic Casson fluid between two parallel plates

来源期刊:中南大学学报(英文版)2019年第5期

论文作者:N. B. NADUVINAMANI Usha SHANKAR

文章页码:1184 - 1204

Key words:squeezing flow; thermal radiation; heat generation or absorption; Casson fluid; Joule dissipation; magnetic field

Abstract: Present numerical study examines the heat and mass transfer characteristics of magneto-hydrodynamic Casson fluid flow between two parallel plates under the influence of thermal radiation, internal heat generation or absorption and Joule dissipation effects with homogeneous first order chemical reaction. The non-Newtonian behaviour of Casson fluid is distinguished from those of Newtonian fluids by considering the well-established rheological Casson fluid flow model. The governing partial differential equations for the unsteady two-dimensional squeezing flow with heat and mass transfer of a Casson fluid are highly nonlinear and coupled in nature. The nonlinear ordinary differential equations governing the squeezing flow are obtained by imposing the similarity transformations on the conservation laws. The resulting equations have been solved by using two numerical techniques, namely Runge-Kutta fourth order integration scheme with shooting technique and bvp4c Matlab solver. The comparison between both the techniques is provided. Further, for the different set physical parameters, the numerical results are obtained and presented in the form of graphs and tables. However, in view of industrial use, the power required to generate the movement of the parallel plates is considerably reduced for the negative values of squeezing number. From the present investigation it is noticed that, due to the presence of stronger Lorentz forces, the temperature and velocity fields eventually suppressed for the enhancing values of Hartmann number. Also, higher values of squeezing number diminish the squeezing force on the fluid flow which in turn reduces the thermal field. Further, the destructive nature of the chemical reaction magnifies the concentration field; whereas constructive chemical reaction decreases the concentration field. The present numerical solutions are compared with previously published results and show the good agreement.

Cite this article as: N. B. NADUVINAMANI, Usha SHANKAR. Radiative squeezing flow of unsteady magneto-hydrodynamic Casson fluid between two parallel plates [J]. Journal of Central South University, 2019, 26(5): 1184–1204. DOI: https://doi.org/10.1007/s11771-019-4080-0.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号