基于Kolmogrov-Smirnov检验和LS-SVM的机械设备故障预测

来源期刊:中南大学学报(自然科学版)2016年第6期

论文作者:花国然 王恒 马海波 黄希

文章页码:1924 - 1930

关键词:故障预测;退化评估;K-S检验;最小二乘支持向量机

Key words:prognostics; degradation assessment; K-S test; least squares support vector machine

摘    要:提出一种基于Kolmogrov-Smirnov检验和LS-SVM的机械设备故障预测新方法。基于K-S检验计算参考样本与正常状态样本经验分布函数的相似度,确定2个样本是否属于同一分布,即设备是否处于相同的运行状态,实现对设备运行退化状态进行识别,并采用当前退化状态与正常状态的K-S距离作为性能评估量化指标,在此基础上给出基于K-S检验和LS-SVM的设备故障预测系统框架。研究结果表明:该方法可以有效地对设备进行退化评估和故障预测,计算效率高,具有较好的适用性。

Abstract: A novel performance degradation assessment method based on K-S test was presented. The similarity between empirical distribution function of normal condition sample and that of test sample was calculated by using Kolmogrov-Smirnov test, and then whether the two samples came from the same distribution, i.e., whether the equipment in the same state or not could be judged, so the degradation statements could be identified. The K-S distance between current state and normal state was calculated as the performance index to assess the degradation. According to that result, the prognostic system framework based on K-S test and LS-SVM was given. The result shows that the proposed method can realize the performance degradation assessment and prognostics effectively and prove to be adaptive.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号