简介概要

Thermomechanical coupling simulation and experimental study in the isothermal ECAP processing of Ti-6Al-4V alloy

来源期刊:Rare Metals2010年第6期

论文作者:LI Miaoquana,b,ZHANG Chena,LUO Jiaoa,and FU Mingwangb a School of Materials Science and Engineering,Northwestern Polytechnical University,Xi’an ,China b Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hong Kong,China

文章页码:613 - 620

摘    要:The thermomechanical coupling simulation of the isothermal equal channel angular pressing(ECAP) of Ti-6Al-4V alloy was conducted.The effect of processing parameters,ECAP pass number and the residual billet on the effective strain,stress and temperature distribution was investigated.Based on the coupling simulation results,it is found that the shear factor,ram speed,deformation temperature,channel intersection angle and residual billet significantly affect the ECAP deformation behaviors.Meanwhile,the experimental study of the isothermal ECAP process of Ti-6Al-4V alloy using route C,in which the repeated rotation angle around the longitudinal billet axis before reinsertion in the die was 180°,were conducted at a deformation temperature of 750°C,a ram speed of 0.3 mm·s-1,an outer arc of curvature of 60° and a channel intersection angle of 120°.Furthermore,a large amount of recrystallization occurs and some prior α phase grains grow in the post-ECAP process of Ti-6Al-4V alloy.The yield strength of post-ECAP Ti-6Al-4V alloy increases compared with that of as-received Ti-6Al-4V alloy.

详情信息展示

Thermomechanical coupling simulation and experimental study in the isothermal ECAP processing of Ti-6Al-4V alloy

摘要:The thermomechanical coupling simulation of the isothermal equal channel angular pressing(ECAP) of Ti-6Al-4V alloy was conducted.The effect of processing parameters,ECAP pass number and the residual billet on the effective strain,stress and temperature distribution was investigated.Based on the coupling simulation results,it is found that the shear factor,ram speed,deformation temperature,channel intersection angle and residual billet significantly affect the ECAP deformation behaviors.Meanwhile,the experimental study of the isothermal ECAP process of Ti-6Al-4V alloy using route C,in which the repeated rotation angle around the longitudinal billet axis before reinsertion in the die was 180°,were conducted at a deformation temperature of 750°C,a ram speed of 0.3 mm·s-1,an outer arc of curvature of 60° and a channel intersection angle of 120°.Furthermore,a large amount of recrystallization occurs and some prior α phase grains grow in the post-ECAP process of Ti-6Al-4V alloy.The yield strength of post-ECAP Ti-6Al-4V alloy increases compared with that of as-received Ti-6Al-4V alloy.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号