简介概要

基于深度学习和经验模态分解的双列圆锥滚动轴承故障诊断

来源期刊:湖南科技大学学报自然科学版2017年第2期

论文作者:廖宁 陶洁 杨大炼

文章页码:70 - 77

关键词:深度学习;双列圆锥滚动轴承;经验模态分解;故障诊断;

摘    要:双列圆锥滚动轴承在列车走行部应用广泛,由于该类轴承结构比较复杂,传统的故障诊断方法难以识别该类轴承的早期微弱故障.为此,提出基于深度学习的双列圆锥滚动轴承早期微弱故障诊断方法.首先,对轴承的振动信号进行经验模态分解,提取信号的瞬时能量构造特征向量;最后,利用深度学习方法对特征向量进行无监督学习,生成故障诊断分类器,完成故障的分类识别.实验中对某型号双列圆锥滚动轴承的正常状态、内圈故障和外圈故障进行信号分析与故障识别.结果表明,所提方法能有效识别双列圆锥滚动轴承的早期微弱故障,分类准确率达到98%.

详情信息展示

基于深度学习和经验模态分解的双列圆锥滚动轴承故障诊断

廖宁1,陶洁2,杨大炼3

1. 中南林业科技大学涉外学院2. 湖南科技大学知识处理与网络化制造实验室3. 湖南科技大学机械设备健康维护湖南省重点实验室

摘 要:双列圆锥滚动轴承在列车走行部应用广泛,由于该类轴承结构比较复杂,传统的故障诊断方法难以识别该类轴承的早期微弱故障.为此,提出基于深度学习的双列圆锥滚动轴承早期微弱故障诊断方法.首先,对轴承的振动信号进行经验模态分解,提取信号的瞬时能量构造特征向量;最后,利用深度学习方法对特征向量进行无监督学习,生成故障诊断分类器,完成故障的分类识别.实验中对某型号双列圆锥滚动轴承的正常状态、内圈故障和外圈故障进行信号分析与故障识别.结果表明,所提方法能有效识别双列圆锥滚动轴承的早期微弱故障,分类准确率达到98%.

关键词:深度学习;双列圆锥滚动轴承;经验模态分解;故障诊断;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号