基于粗糙集降维和相关向量机的长期用电需求预测方法

来源期刊:中南大学学报(自然科学版)2013年第12期

论文作者:郭晓鹏 杨淑霞 杨里

文章页码:5133 - 5139

关键词:粗糙集;相关向量机;RVM回归模型;预测;用电需求

Key words:rough set; relevance vector machine; RVM regression model; forecasting; electricity demand

摘    要:提出基于粗糙集降维的相关向量机用电量预测模型。选取1996—2010年北京市的GDP作为输入值,对应的全社会用电量作为输出值进行分析验证。研究结果表明:相关向量机是一种新的监督学习方法,与支持向量机相比,它更加稀疏,泛化能力更强且不需要设置惩罚因子,而粗糙集降维被用于从多个相关因素中筛选出适用于RVM回归模型的输入向量集,进而提高算法效率;基于相关向量机的用电量预测模型比经过优化参数后的支持向量机预测模型更优。

Abstract: The electricity demand forecasting model based on the rough set and relevance vector machine was studied. To verify the validity of the model, the GDP and the electricity consumption data of Beijing from 1996 to 2010 were selected and analyzed with the GDP data was selected as input data, and the electricity consumption data used as output data. The results show that the relevance vector machine is a new supervising learning method. Compared with the support vector machine, it is sparser, with more generalization abilities and does not need to set the penalty factor. Rough set reduction is used to filter out the input vector for RVM regression model from a number of related factors, thus improving the efficiency of the algorithm. The electricity demand forecasting model based on the relevance vector machine is better than the support vector machine prediction model based on particle swarm optimization parameters.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号