简介概要

Microstructure and graphitization behavior of diamond/SiC composites fabricated by vacuum vapor reactive infiltration

来源期刊:Rare Metals2015年第6期

论文作者:Zhen-Liang Yang Li-Gen Wang Li-Min Wang Xin-Bo He Xuan-Hui Qu Rong-Jun Liu Hai-Feng Hu

文章页码:400 - 406

摘    要:To inhibit the graphitization of diamond under high temperature and low pressure, diamond/Si C composites were firstly fabricated by a rapid gaseous Si vacuum reactive infiltration process. The microstructure and graphitization behavior of diamond in the composites under various infiltration temperatures and holding time were investigated. The thermal conductivity of the resultant materials was discussed. The results show that the diamond-to-graphite transition is effectively inhibited at temperature of as high as 1600 °C under vacuum, and the substantial graphitization starts at 1700 °C. The microstructure of those ungraphitized samples is uniform and fully densified. The inhibition mechanisms of graphitization include the isolation of the catalysts from diamond by a series of protective layers, high pressure stress applied on diamond by the reaction-bonded Si C, and the moderate gas–solid reaction. For the graphitized samples, the boundary between diamond and Si C is coarse and loose.The graphitization mechanism is considered to be an initial detachment of the bilayers from the diamond surfaces, and subsequently flattening to form graphite. The ungraphitized samples present higher thermal conductivity of about 410 W·m-1·K-1due to the fine interfacial structure. For the graphitized samples, the thermal conductivity decreases significantly to 285 W·m-1·K-1as a result of high interfacial thermal resistance.

详情信息展示

Microstructure and graphitization behavior of diamond/SiC composites fabricated by vacuum vapor reactive infiltration

Zhen-Liang Yang1,Li-Gen Wang2,Li-Min Wang1,Xin-Bo He3,Xuan-Hui Qu3,Rong-Jun Liu4,Hai-Feng Hu4

1. Gripm Advanced Materials Co., Ltd2. State Key Laboratory of Nonferrous Metals and Processes, General Research Institute for Nonferrous Metals3. School of Materials Science and Engineering, University of Science and Technology Beijing4. College of Aerospace and Materials Engineering, National University of Defense Technology

摘 要:To inhibit the graphitization of diamond under high temperature and low pressure, diamond/Si C composites were firstly fabricated by a rapid gaseous Si vacuum reactive infiltration process. The microstructure and graphitization behavior of diamond in the composites under various infiltration temperatures and holding time were investigated. The thermal conductivity of the resultant materials was discussed. The results show that the diamond-to-graphite transition is effectively inhibited at temperature of as high as 1600 °C under vacuum, and the substantial graphitization starts at 1700 °C. The microstructure of those ungraphitized samples is uniform and fully densified. The inhibition mechanisms of graphitization include the isolation of the catalysts from diamond by a series of protective layers, high pressure stress applied on diamond by the reaction-bonded Si C, and the moderate gas–solid reaction. For the graphitized samples, the boundary between diamond and Si C is coarse and loose.The graphitization mechanism is considered to be an initial detachment of the bilayers from the diamond surfaces, and subsequently flattening to form graphite. The ungraphitized samples present higher thermal conductivity of about 410 W·m-1·K-1due to the fine interfacial structure. For the graphitized samples, the thermal conductivity decreases significantly to 285 W·m-1·K-1as a result of high interfacial thermal resistance.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号