简介概要

基于粗糙集和神经网络的密闭鼓风炉故障诊断

来源期刊:控制工程2008年第4期

论文作者:阳春华 谷丽姗 桂卫华 朱红求

文章页码:461 - 465

关键词:密闭鼓风炉;故障诊断;粗糙集;神经网络;启发式约简;

摘    要:针对密闭鼓风炉过程机理的复杂性及过程信息的不确定性,研究了基于粗糙集(RS)与神经网络相结合的故障诊断方法。采用自组织映射神经网络(SOM)和条件属性依赖度相结合的方法,对连续的样本数据进行离散化,应用基于专家经验与条件属性依赖度相结合的属性重要度计算方法进行启发式RS约简,并把约简结果作为BP神经网络的输入。实验结果表明,采用该方法不仅优化了神经网络的拓扑结构,降低了神经网络的训练时间,同时大大提高了学习速度和故障诊断的准确率。

详情信息展示

基于粗糙集和神经网络的密闭鼓风炉故障诊断

阳春华,谷丽姗,桂卫华,朱红求

摘 要:针对密闭鼓风炉过程机理的复杂性及过程信息的不确定性,研究了基于粗糙集(RS)与神经网络相结合的故障诊断方法。采用自组织映射神经网络(SOM)和条件属性依赖度相结合的方法,对连续的样本数据进行离散化,应用基于专家经验与条件属性依赖度相结合的属性重要度计算方法进行启发式RS约简,并把约简结果作为BP神经网络的输入。实验结果表明,采用该方法不仅优化了神经网络的拓扑结构,降低了神经网络的训练时间,同时大大提高了学习速度和故障诊断的准确率。

关键词:密闭鼓风炉;故障诊断;粗糙集;神经网络;启发式约简;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号