简介概要

MEVVA磁过滤等离子技术制备的Fe纳米颗粒薄膜结构

图书来源:二元合金相图及中间相晶体结构 二元合金相图及中间相晶体结构

作 者:唐仁政 田荣璋

出版时间:2009-05

定 价:320元

图书ISBN:978-7-81105-831-4

出版单位:中南大学出版社

详情信息展示

Calculating models of mass action concentrations for NaBr(aq), LiNO3(aq), HNO3(aq), and KF(aq) binary solutions

Hanjie Guo1), Weijie Zhao1), and Xuemin Yang2) 1) Metallurgical and Ecological Engineering School, University of Science and Technology Beijing, Beijing 100083, China 2) State Key Lab of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, China

摘 要:The calculating models of mass action concentrations for electrolyte aqueous solutions NaBr-H2O, LiNO3-H2O, HNO3-H2O, and KF-H2O have been developed at 298.15 K and their molalities ranging from 0.1 mol/kg to saturation according to the ion and molecule coexistence theory as well as mass action law. The calculated mass action concentration is based on pure species as the standard state and the mole fraction as the concentration unit, and the reported activities are usually based on infinite dilution as the standard state and molality as the concentration unit. Hence, the calculated mass action concentration must be transformed to the same standard state and concentration unit. The transformation coefficients between calculated mass action concentrations and reported ac- tivities of the same component fluctuate in a very narrow range. Thus, the transformed mass action concentrations not only agree well with reported activities, but also strictly obey mass action law. The calculated results show that the new developed models can embody the intrinsic structure of investigated four electrolyte aqueous solutions. The results also indicate that mass action law has its wide- spread applicability to electrolyte binary aqueous solutions.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号