简介概要

Evaluation of Process Capability in Gas Carburizing Process to Achieve Quality through Limit Design Concept

来源期刊:材料热处理学报2004年第5期

论文作者:K.Palaniradja N.Alagumurthi V.Soundararajan

关键词:Gas carburizing; optimization; carbon potential; holding time; quenching time; furnace temperature;

摘    要:Steel is the most important metallic material used in industry. This is because of the versatility of its engineering properties under different conditions. In one condition it can be very mild, soft and suitable for any forming operation. In another condition the same steel can be very hard and strong. This versatility is made possible by the different heat treatments that the steel can be subject to. One such treatment is Gas carburizing. This is the most widely used process for surface hardening of low carbon steels. In this method the surface composition of the steel changes by diffusion of carbon and or nitrogen and result in hard outer surface with good wear resistance properties. A striking feature of Gas Carburizing process is that in this process the original toughness and ductility remains unaffected even after heat treatment. 3% nickel chromium case hardened low carbon steels are widely used for critical automotive and machine applications such as rack and pinion, gears, camshaft, valve rocker shafts and axles which requires high fatigue resistance. Fatigue behaviour of case carburized parts depends to a great extent on the correct combination of Hardness Penetration Depth (HPD) and the magnitude of hardness at the surface and beneath the surface with low size and shape distortion. In order to reduce the manufacturing costs in terms of material consumption and elimination of the number of processing steps, the effect of Gas carburizing parameters on the fatigue behaviour should already be considered in the parameter design stage. Therefore it is of importance to optimize the gas carburizing process variables to attain quality products with respect to hardness and case depth. In the present paper, the evaluation of process capability was carried out through a Limit Design Concept called orthogonal array design of experiment. To optimize the process variables the influence of several parameters (Holding time,Carbon potential, Furnace temperature and Quench time) of the gas carburizing process on the micro hardness, total case depth, effective case depth and level of distortion of AISI 8620 steel were discussed.

详情信息展示

Evaluation of Process Capability in Gas Carburizing Process to Achieve Quality through Limit Design Concept

K.Palaniradja1,N.Alagumurthi1,V.Soundararajan1

(1.Department of Mechanical Engineering, Pondicherry Engineering College, India)

摘要:Steel is the most important metallic material used in industry. This is because of the versatility of its engineering properties under different conditions. In one condition it can be very mild, soft and suitable for any forming operation. In another condition the same steel can be very hard and strong. This versatility is made possible by the different heat treatments that the steel can be subject to. One such treatment is Gas carburizing. This is the most widely used process for surface hardening of low carbon steels. In this method the surface composition of the steel changes by diffusion of carbon and or nitrogen and result in hard outer surface with good wear resistance properties. A striking feature of Gas Carburizing process is that in this process the original toughness and ductility remains unaffected even after heat treatment. 3% nickel chromium case hardened low carbon steels are widely used for critical automotive and machine applications such as rack and pinion, gears, camshaft, valve rocker shafts and axles which requires high fatigue resistance. Fatigue behaviour of case carburized parts depends to a great extent on the correct combination of Hardness Penetration Depth (HPD) and the magnitude of hardness at the surface and beneath the surface with low size and shape distortion. In order to reduce the manufacturing costs in terms of material consumption and elimination of the number of processing steps, the effect of Gas carburizing parameters on the fatigue behaviour should already be considered in the parameter design stage. Therefore it is of importance to optimize the gas carburizing process variables to attain quality products with respect to hardness and case depth. In the present paper, the evaluation of process capability was carried out through a Limit Design Concept called orthogonal array design of experiment. To optimize the process variables the influence of several parameters (Holding time,Carbon potential, Furnace temperature and Quench time) of the gas carburizing process on the micro hardness, total case depth, effective case depth and level of distortion of AISI 8620 steel were discussed.

关键词:Gas carburizing; optimization; carbon potential; holding time; quenching time; furnace temperature;

【全文内容正在添加中】

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号