基于Bootstrap多神经网络的软测量方法
来源期刊:控制工程2009年第4期
论文作者:周长 张杰 吕文祥 刘先广 黄德先
文章页码:475 - 983
关键词:原油蒸馏;软测量;Bootstrap;多神经网络;
摘 要:针对原油蒸馏过程常规软测量模型难以适应原油进料性质变化的问题,提出Bootstrap多神经网络的非线性软测量处理策略。通过Bootstrap算法复制出训练集样本空间上的多个样本子空间,训练出多神经网络模型,避免了单个神经网络易于陷入局部最优及过度训练的弱点,具有较高的准确率和泛化能力。本处理策略用于建立常压塔一线干点的软测量模型,仿真结果表明模型预测准确率和鲁棒性较好,对原油性质变化具有较好的适应性。该方法将会改进实际蒸馏过程在进料性质变化情况下的产品质量指标的软测量精度。
周长1,张杰2,吕文祥1,刘先广3,黄德先1
1. 清华大学自动化系2. 纽卡斯尔大学化工与先进材料学院3. 北京清大腾飞公司
摘 要:针对原油蒸馏过程常规软测量模型难以适应原油进料性质变化的问题,提出Bootstrap多神经网络的非线性软测量处理策略。通过Bootstrap算法复制出训练集样本空间上的多个样本子空间,训练出多神经网络模型,避免了单个神经网络易于陷入局部最优及过度训练的弱点,具有较高的准确率和泛化能力。本处理策略用于建立常压塔一线干点的软测量模型,仿真结果表明模型预测准确率和鲁棒性较好,对原油性质变化具有较好的适应性。该方法将会改进实际蒸馏过程在进料性质变化情况下的产品质量指标的软测量精度。
关键词:原油蒸馏;软测量;Bootstrap;多神经网络;