简介概要

Arc Erosion Behavior of Cu–0.23Be–0.84Co Alloy after Heat Treatment: An Experimental Study

来源期刊:Acta Metallurgica Sinica2016年第4期

论文作者:Yanjun Zhou Kexing Song Jiandong Xing Zhou Li Xiuhua Guo

文章页码:399 - 408

摘    要:The arc erosion behavior of Cu–0.23Be–0.84 Co alloy after heat treatment was investigated experimentally by a JF04 C electric contact test system. The arc duration, arc energy, contact resistance and contact pressure of Cu–0.23Be–0.84 Co alloy after solution treatment and aging treatment were analyzed. The arc erosion morphologies were contrastively observed by a three-dimensional measuring system and scanning electron microscopy. For the Cu–0.23Be–0.84 Co alloy in solution state and aging state, the maximum values of arc duration are 90 and 110 ms, and the arc energies are 15,000 and18,000 m J, respectively. The maximum value of the contact resistance of Cu–0.23Be–0.84 Co alloy in different states is about 33 m X. The contact pressure of Cu–0.23Be–0.84 Co alloy in solution state generally changes between 50 and 60 c N during whole make-and-break contacts, while in aging state, it has a larger fluctuation range. Moreover, the quality of moving contact(anode) decreases, while static contact(cathode) increases. The materials transfer from anode to cathode during make-and-break contacts. The total mass losses of Cu–0.23Be–0.84 Co alloy in solution state and aging state are 3and 1.2 mg, respectively. In addition, a number of discrete corrosion pits, molten droplet, porosity and cavity distribute on the surface of moving contact and static contact. The arc erosion model of Cu–0.23Be–0.84 Co alloy in make-and-break contact was built. The arc erosion resistance of Cu–0.23Be–0.84 Co alloy after heat treatment is closely related to the microstructure and the properties of contact materials. This experimental study is important to evaluate the anode or cathode electrocorrosion fatigue life.

详情信息展示

Arc Erosion Behavior of Cu–0.23Be–0.84Co Alloy after Heat Treatment: An Experimental Study

Yanjun Zhou1,Kexing Song2,3,Jiandong Xing1,Zhou Li4,Xiuhua Guo2,3

1. State Key Laboratory for Mechanical Behavior of Materials,School of Materials Science and Engineering, Xi’an Jiaotong University2. Collaborative Innovation Center of Nonferrous Metals,Henan University of Science and Technology3. School of Materials Science and Engineering, Henan University of Science and Technology4. School of Materials Science and Engineering, Central South University

摘 要:The arc erosion behavior of Cu–0.23Be–0.84 Co alloy after heat treatment was investigated experimentally by a JF04 C electric contact test system. The arc duration, arc energy, contact resistance and contact pressure of Cu–0.23Be–0.84 Co alloy after solution treatment and aging treatment were analyzed. The arc erosion morphologies were contrastively observed by a three-dimensional measuring system and scanning electron microscopy. For the Cu–0.23Be–0.84 Co alloy in solution state and aging state, the maximum values of arc duration are 90 and 110 ms, and the arc energies are 15,000 and18,000 m J, respectively. The maximum value of the contact resistance of Cu–0.23Be–0.84 Co alloy in different states is about 33 m X. The contact pressure of Cu–0.23Be–0.84 Co alloy in solution state generally changes between 50 and 60 c N during whole make-and-break contacts, while in aging state, it has a larger fluctuation range. Moreover, the quality of moving contact(anode) decreases, while static contact(cathode) increases. The materials transfer from anode to cathode during make-and-break contacts. The total mass losses of Cu–0.23Be–0.84 Co alloy in solution state and aging state are 3and 1.2 mg, respectively. In addition, a number of discrete corrosion pits, molten droplet, porosity and cavity distribute on the surface of moving contact and static contact. The arc erosion model of Cu–0.23Be–0.84 Co alloy in make-and-break contact was built. The arc erosion resistance of Cu–0.23Be–0.84 Co alloy after heat treatment is closely related to the microstructure and the properties of contact materials. This experimental study is important to evaluate the anode or cathode electrocorrosion fatigue life.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号