Systematic study of Ce3+ on the structural and magnetic properties of Cu nanosized ferrites for potential applications
来源期刊:Journal of Rare Earths2018年第2期
论文作者:A.B.Sulong Muhammad Azhar Khan
文章页码:156 - 164
摘 要:Ce3+ substituted Cu-spinel nanoferrites CuCexFe2-xO4(x=0.00, 0.02, 0.04, 0.06, 0.08 and 0.10) were synthesized via sol-gel self-combustion hybrid route. Single phase spinel ferrite of Cu nanoferrites were examined using X-ray diffraction(XRD) analysis whereas the multiphase structure was observed as Ce contents increased from x=0.06. Field emission scanning electron microscopy(FESEM), Thermogravimetric and differential thermal analysis(TGA and DTA) and Fourier transform infrared spectroscopy(FTIR) were used to find out the morphology phase and metal stretching vibrations of Ce3+ substituted nanocrystalline ferrites. The crystallite size was increased and found in the range of 25-91 nm. The agglomerations in Cu ferrite samples increase as the Ce3+ concentration increases. The magnetic properties such as remanence, saturation magnetization, coercivity, Bohr magneton and magnetocrystalline anisotropy constant(K) were determined using M-H loops recorded from a vibrating sample magnetometer(VSM). Saturation magnetization, remanence and coercivity are increased as the Ce3+contents increase in Cu nanocrystalline samples. Moreover, law of approach to saturation(LoA) was used to calculate the maximum value of saturation for Ce-doped Cu nanoferrites. The soft magnetic behaviour of the Cu nanoferrite is observed as compared to the samples substituted with the increased Ce contents in Cu nanocrystalline ferrite. Bohr magneton and magnetocrystalline anisotropy are found to increase with the substitution of rare earth Ce3+ contents in Cu spinel nanocrystalline ferrite. Cedoped Cu nanocrystalline ferrites with excellent properties may be suitable for potential applications in sensing, security, switching, core, multilayer chip inductor, biomedical and microwave absorption applications.
A.B.Sulong2,Muhammad Azhar Khan4
2. Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM)4. Department of Physics, The Islamia University of Bahawalpur
摘 要:Ce3+ substituted Cu-spinel nanoferrites CuCexFe2-xO4(x=0.00, 0.02, 0.04, 0.06, 0.08 and 0.10) were synthesized via sol-gel self-combustion hybrid route. Single phase spinel ferrite of Cu nanoferrites were examined using X-ray diffraction(XRD) analysis whereas the multiphase structure was observed as Ce contents increased from x=0.06. Field emission scanning electron microscopy(FESEM), Thermogravimetric and differential thermal analysis(TGA and DTA) and Fourier transform infrared spectroscopy(FTIR) were used to find out the morphology phase and metal stretching vibrations of Ce3+ substituted nanocrystalline ferrites. The crystallite size was increased and found in the range of 25-91 nm. The agglomerations in Cu ferrite samples increase as the Ce3+ concentration increases. The magnetic properties such as remanence, saturation magnetization, coercivity, Bohr magneton and magnetocrystalline anisotropy constant(K) were determined using M-H loops recorded from a vibrating sample magnetometer(VSM). Saturation magnetization, remanence and coercivity are increased as the Ce3+contents increase in Cu nanocrystalline samples. Moreover, law of approach to saturation(LoA) was used to calculate the maximum value of saturation for Ce-doped Cu nanoferrites. The soft magnetic behaviour of the Cu nanoferrite is observed as compared to the samples substituted with the increased Ce contents in Cu nanocrystalline ferrite. Bohr magneton and magnetocrystalline anisotropy are found to increase with the substitution of rare earth Ce3+ contents in Cu spinel nanocrystalline ferrite. Cedoped Cu nanocrystalline ferrites with excellent properties may be suitable for potential applications in sensing, security, switching, core, multilayer chip inductor, biomedical and microwave absorption applications.
关键词: