简介概要

N在γ-Ni/γ′-Ni3Al相界区域的占位趋势与脆化作用

来源期刊:中国有色金属学报2012年第12期

论文作者:彭黎 刘云国 杜付明 文大东 黄利群 彭平

文章页码:3356 - 3365

关键词:γ-Ni/γ′-Ni3Al相界;N掺杂;第一原理计算;脆化;电子结构

Key words:γ-Ni/γ′-Ni3Al interface; N-doping; first-principle calculation; embrittlement; electronic structure

摘    要:采用第一原理赝势平面波方法研究迹量元素N在γ-Ni/γ′-Ni3Al相界区域的占位趋势及其对相界断裂强度的影响。结果显示:以气态形式存在的N不易掺杂到Ni/Ni3Al相界,而以固态形式存在的N则很容易被掺进Ni/Ni3Al相界;N在Ni/Ni3Al相界中不仅能稳定存在,而且掺杂到八面体间隙比置换其中的基体原子具有更高的形成能力与结构稳定性;N掺杂将削弱Ni/Ni3Al相界的断裂强度,其中尤以间隙位掺杂最为明显。电子结构分析表明:置换型掺杂时,相界断裂强度的降低可归结为Frenkel缺陷导致的掺杂相界层间电子相互作用的减弱;而间隙位掺杂,除了基体原子间电子相互作用因掺杂原子与基体原子间的强相互作用而减弱外,晶格畸变导致的局域弹性应变能增加也是一个重要的原因。

Abstract: Using a first-principles plane-wave pseudopotential method, the site preference of N and its influence on the fracture behavior of the γ-Ni/γ′-Ni3Al interface were investigated. The results show that the gaseous N2 is difficult to be joined into the Ni/Ni3Al interfacial region, but solid N impurity can be easily doped into the Ni/Ni3Al interface. The N-doped interfacial system can stably exist either for substitution for host atoms or for occupation at octahedral interstices, and N prefers to occupy the octahedral interstitial sites. N-doping, especially at octahedral interstitial sites, makes the fracture strength of the Ni/Ni3Al interface be weakened. For the substitutional interface, the N-induced embrittlement can be attributed to the decrease of electronic interactions between adjacent atomic layers caused by the Frenkel defect. While in the case of interstitial doping, a multiple influence of a decreasing electronic interaction between host atoms induced by a strong bonding between N and its nearest host atoms and a increased elastic strain energy originated from lattice distortion should be responsible for the harmful effect of N on strengthening of the Ni/Ni3Al interface.

详情信息展示

N在γ-Ni/γ′-Ni3Al相界区域的占位趋势与脆化作用

彭 黎1, 2,刘云国1,杜付明2,文大东2,黄利群3,彭 平2

(1. 湖南大学 环境科学与工程学院,长沙 410082;
2. 湖南大学 材料科学与工程学院,长沙 410082;
3. 湖南省气象局 气象培训中心,长沙 410125)

摘 要:采用第一原理赝势平面波方法研究迹量元素N在γ-Ni/γ′-Ni3Al相界区域的占位趋势及其对相界断裂强度的影响。结果显示:以气态形式存在的N不易掺杂到Ni/Ni3Al相界,而以固态形式存在的N则很容易被掺进Ni/Ni3Al相界;N在Ni/Ni3Al相界中不仅能稳定存在,而且掺杂到八面体间隙比置换其中的基体原子具有更高的形成能力与结构稳定性;N掺杂将削弱Ni/Ni3Al相界的断裂强度,其中尤以间隙位掺杂最为明显。电子结构分析表明:置换型掺杂时,相界断裂强度的降低可归结为Frenkel缺陷导致的掺杂相界层间电子相互作用的减弱;而间隙位掺杂,除了基体原子间电子相互作用因掺杂原子与基体原子间的强相互作用而减弱外,晶格畸变导致的局域弹性应变能增加也是一个重要的原因。

关键词:γ-Ni/γ′-Ni3Al相界;N掺杂;第一原理计算;脆化;电子结构

Site preference of N and N-induced embrittlement at γ-Ni/γ′-Ni3Al interface

PENG Li1, 2, LIU Yun-guo1, DU Fu-ming2, WEN Da-dong2, HUANG Li-qun3, PENG Ping2

(1. College of Environmental Science and Engineering, Hunan University, Changsha 410082, China;
2. College of Materials Science and Engineering, Hunan University, Changsha 410082, China;

Abstract:Using a first-principles plane-wave pseudopotential method, the site preference of N and its influence on the fracture behavior of the γ-Ni/γ′-Ni3Al interface were investigated. The results show that the gaseous N2 is difficult to be joined into the Ni/Ni3Al interfacial region, but solid N impurity can be easily doped into the Ni/Ni3Al interface. The N-doped interfacial system can stably exist either for substitution for host atoms or for occupation at octahedral interstices, and N prefers to occupy the octahedral interstitial sites. N-doping, especially at octahedral interstitial sites, makes the fracture strength of the Ni/Ni3Al interface be weakened. For the substitutional interface, the N-induced embrittlement can be attributed to the decrease of electronic interactions between adjacent atomic layers caused by the Frenkel defect. While in the case of interstitial doping, a multiple influence of a decreasing electronic interaction between host atoms induced by a strong bonding between N and its nearest host atoms and a increased elastic strain energy originated from lattice distortion should be responsible for the harmful effect of N on strengthening of the Ni/Ni3Al interface.

Key words:γ-Ni/γ′-Ni3Al interface; N-doping; first-principle calculation; embrittlement; electronic structure

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号