Effect of flow stress—strain relation on forming limit of 5754O aluminum alloy

来源期刊:中国有色金属学报(英文版)2012年第10期

论文作者:王海波 万敏 阎昱

文章页码:2370 - 2378

关键词:铝合金;成形极限;金属板料;流动应力—应变关系;非均匀变形

Key words:aluminum alloy; forming limit; sheet metal; flow stress—strain relation; inhomogenous deformation

摘    要:为了合理描述单向拉伸试验曲线,给出了一种修正的Swift型流动应力—应变关系。基于两种流动应力—应变关系,采用Yld2000-2d屈服准则计算5754O铝合金板的成形极限应变图(FLD-strain)。通过对比理论和实验结果,发现基于修正的Swift型的应力—应变关系所计算的FLD-strain能够合理地描述实验结果。虽然常用的Voce型应力—应变关系能够精确地描述均匀变形阶段的变形行为,但基于该应力—应变关系计算的FLD-strain明显低于实验结果。结果表明,板料的强化率越高则相应的成形极限也越高。为了描述板料在非均匀变形阶段的变形行为和成形极限,建议了一种用于确定合理的流动应力—应变关系的方法。

Abstract: A modified Swift type flow stress—strain relation was presented in order to describe the uniaxial tension test curve reasonably. The FLD-strain (forming limit diagram made up of limit strain) of 5754O aluminum alloy sheet was calculated based on the two flow stress—strain relations using Yld2000-2d yield function. By comparing the theoretical and experimental results, it is found that the calculated FLD-strain based on the modified Swift flow stress—strain relation can reasonably describe the experimental results. However, though the common Voce flow stress—strain relation can describe the deformation behavior during homogenous deformation phase accurately, the FLD-strain calculated based on it is obviously lower than the experimental result. It is concluded that the higher the hardening rate of sheet metal is, the higher the forming limit is. A method for determining the reasonable flow stress—strain relation is recommended for describing the material behavior during inhomogenous phase and the forming limit of sheet metal.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号