简介概要

Factors affecting accuracy of radial point interpolation meshfree method for 3-D solid mechanics

来源期刊:中南大学学报(英文版)2013年第11期

论文作者:PENG Chong(彭翀) YUAN Hui-na(袁会娜) ZHANG Bing-yin(张丙印) ZHANG Yan(张琰)

文章页码:3229 - 3246

Key words:meshfree method; radial point interpolation method; shape parameter; influence domain size; nodal distribution

Abstract: Recently, the radial point interpolation meshfree method has gained popularity owing to its advantages in large deformation and discontinuity problems, however, the accuracy of this method depends on many factors and their influences are not fully investigated yet. In this work, three main factors, i.e., the shape parameters, the influence domain size, and the nodal distribution, on the accuracy of the radial point interpolation method (RPIM) are systematically studied and conclusive results are obtained. First, the effect of shape parameters (R, q) of the multi-quadric basis function on the accuracy of RPIM is examined via global search. A new interpolation error index, closely related to the accuracy of RPIM, is proposed. The distribution of various error indexes on the R-q plane shows that shape parameters q [1.2, 1.8] and R [0, 1.5] can give good results for general 3-D analysis. This recommended range of shape parameters is examined by multiple benchmark examples in 3D solid mechanics. Second, through numerical experiments, an average of 30-40 nodes in the influence domain of a Gauss point is recommended for 3-D solid mechanics. Third, it is observed that the distribution of nodes has significant effect on the accuracy of RPIM although it has little effect on the accuracy of interpolation. Nodal distributions with better uniformity give better results. Furthermore, how the influence domain size and nodal distribution affect the selection of shape parameters and how the nodal distribution affects the choice of influence domain size are also discussed.

详情信息展示

Factors affecting accuracy of radial point interpolation meshfree method for 3-D solid mechanics

PENG Chong(彭翀), YUAN Hui-na(袁会娜), ZHANG Bing-yin(张丙印), ZHANG Yan(张琰)

(State Key Laboratory of Hydroscience and Engineering (Department of Hydraulic Engineering, Tsinghua University), Beijing 100084, China)

Abstract:Recently, the radial point interpolation meshfree method has gained popularity owing to its advantages in large deformation and discontinuity problems, however, the accuracy of this method depends on many factors and their influences are not fully investigated yet. In this work, three main factors, i.e., the shape parameters, the influence domain size, and the nodal distribution, on the accuracy of the radial point interpolation method (RPIM) are systematically studied and conclusive results are obtained. First, the effect of shape parameters (R, q) of the multi-quadric basis function on the accuracy of RPIM is examined via global search. A new interpolation error index, closely related to the accuracy of RPIM, is proposed. The distribution of various error indexes on the R-q plane shows that shape parameters q [1.2, 1.8] and R [0, 1.5] can give good results for general 3-D analysis. This recommended range of shape parameters is examined by multiple benchmark examples in 3D solid mechanics. Second, through numerical experiments, an average of 30-40 nodes in the influence domain of a Gauss point is recommended for 3-D solid mechanics. Third, it is observed that the distribution of nodes has significant effect on the accuracy of RPIM although it has little effect on the accuracy of interpolation. Nodal distributions with better uniformity give better results. Furthermore, how the influence domain size and nodal distribution affect the selection of shape parameters and how the nodal distribution affects the choice of influence domain size are also discussed.

Key words:meshfree method; radial point interpolation method; shape parameter; influence domain size; nodal distribution

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号