简介概要

An Improved Method to Prepare FePO4 by Introduction of Na3PO4 and Its Usage for Fabricating LiFePO4

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2019年第5期

论文作者:司秀荣 FU Xu

文章页码:1097 - 1102

摘    要:A LiFePO4/C composite was synthesized by a simple solid-state reaction method using glucose as reductive agent and carbon source and FePO4 as precursor, which was prepared by introduction of Na3PO4 as phosphorus source and pH regulator in order to pursue lower cost and environmental protection. The structure and morphology of FePO4 and LiFePO4/C were investigated by X-ray diffraction(XRD) and scanning electron microscopy(SEM). Furthermore, electrochemical performance of LiFePO4/C was investigated by galvanostatic charge–discharge tests and cyclicvoltammogram(CV). The results indicate that FePO4 obtained has a small particle size and uniform particle distribution, which is demonstrated to be applicable as the iron source to synthesize LiFePO4/C. Prepared LiFePO4/C shows an excellent rate capability and cycle performance. At rates of 0.1 C, 0.2 C, 1 C and 2 C, the initial discharge capacities of 161, 158, 145 and 120 mAh/g were achieved, respectively and the discharge capacity is 154, 153, 140 and 116 mAh/g after 400 cycles. The employed method of preparing FePO4 by introduction of Na3PO4 has advantages such as low cost, safe raw material, environmental benign and recyclable products, which is suitable for industrial production.

详情信息展示

An Improved Method to Prepare FePO4 by Introduction of Na3PO4 and Its Usage for Fabricating LiFePO4

司秀荣1,FU Xu1

1. Civil Engineering Department, North China Institute of Aerospace Engineering

摘 要:A LiFePO4/C composite was synthesized by a simple solid-state reaction method using glucose as reductive agent and carbon source and FePO4 as precursor, which was prepared by introduction of Na3PO4 as phosphorus source and pH regulator in order to pursue lower cost and environmental protection. The structure and morphology of FePO4 and LiFePO4/C were investigated by X-ray diffraction(XRD) and scanning electron microscopy(SEM). Furthermore, electrochemical performance of LiFePO4/C was investigated by galvanostatic charge–discharge tests and cyclicvoltammogram(CV). The results indicate that FePO4 obtained has a small particle size and uniform particle distribution, which is demonstrated to be applicable as the iron source to synthesize LiFePO4/C. Prepared LiFePO4/C shows an excellent rate capability and cycle performance. At rates of 0.1 C, 0.2 C, 1 C and 2 C, the initial discharge capacities of 161, 158, 145 and 120 mAh/g were achieved, respectively and the discharge capacity is 154, 153, 140 and 116 mAh/g after 400 cycles. The employed method of preparing FePO4 by introduction of Na3PO4 has advantages such as low cost, safe raw material, environmental benign and recyclable products, which is suitable for industrial production.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号