简介概要

Coexistence of Bipolar and Unipolar Resistive Switching Behavior in Ag/ZnMn2O4/p+-Si Device

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2018年第6期

论文作者:张玉佩 王华 XU Jiwen LI Zhida YANG Ling

文章页码:1433 - 1436

摘    要:ZnMn2O4 thin films were deposited by a sol-gel technique onto a p+-Si substrate, and a RRAM device with the Ag/ZnMn2O4/p+-Si structure was fabricated. The microstructure of ZnMn2O4 films and the resistive switching behavior of Ag/ZnMn2O4/p+-Si device were investigated. ZnMn2O4 thin films had a spinel structure after annealing at 650 °C for 1 h. The Ag/ZnMn2O4/p+-Si device showed unipolar and/or bipolar resistive switching behavior, exhibiting different ION/IOFF ratio and switching endurance properties. In bipolar resistive switching, high-resistance-state(HRS) conduction was dominated by the space-charge-limited conduction mechanism, whereas the filament conduction mechanism dictated the low resistance state(LRS). For unipolar resistive switching, HRS and LRS were controlled by the filament conduction mechanism. For bipolar resistive switching, the conduction process can be explained by the space-charge region of the p-n junction.

详情信息展示

Coexistence of Bipolar and Unipolar Resistive Switching Behavior in Ag/ZnMn2O4/p+-Si Device

张玉佩,王华,XU Jiwen,LI Zhida,YANG Ling

School of Materials Science and Engineering, Guilin University of Electronic Technology

摘 要:ZnMn2O4 thin films were deposited by a sol-gel technique onto a p+-Si substrate, and a RRAM device with the Ag/ZnMn2O4/p+-Si structure was fabricated. The microstructure of ZnMn2O4 films and the resistive switching behavior of Ag/ZnMn2O4/p+-Si device were investigated. ZnMn2O4 thin films had a spinel structure after annealing at 650 °C for 1 h. The Ag/ZnMn2O4/p+-Si device showed unipolar and/or bipolar resistive switching behavior, exhibiting different ION/IOFF ratio and switching endurance properties. In bipolar resistive switching, high-resistance-state(HRS) conduction was dominated by the space-charge-limited conduction mechanism, whereas the filament conduction mechanism dictated the low resistance state(LRS). For unipolar resistive switching, HRS and LRS were controlled by the filament conduction mechanism. For bipolar resistive switching, the conduction process can be explained by the space-charge region of the p-n junction.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号