基于RBF神经网络RE-Ni-Cu合金铸铁静态腐蚀性能预测
来源期刊:兵器材料科学与工程2014年第6期
论文作者:王玉荣 乌日根
文章页码:66 - 68
关键词:RBF神经网络;合金铸铁;腐蚀深度;静态腐蚀;预测;
摘 要:通过静态腐蚀试验获取35组样本数据,利用MATLAB软件的工具箱函数建立RBF神经网络预测模型,并对RENi-Cu合金铸铁的静态腐蚀深度和耐蚀性进行预测研究。结果表明:RBF神经网络预测RE-Ni-Cu合金铸铁在浓碱液中的静态腐蚀性能可行且有效,能较好地反映主要合金成分、腐蚀时间、碱液温度与静态腐蚀深度之间的非线性映射关系;当RBF网络的扩展系数为0.5,静态腐蚀深度的网络预测值与实测值之间的相对误差最小,且耐蚀等级和耐蚀评价的准确率均达到100%。
王玉荣,乌日根
包头职业技术学院人文与艺术设计系
摘 要:通过静态腐蚀试验获取35组样本数据,利用MATLAB软件的工具箱函数建立RBF神经网络预测模型,并对RENi-Cu合金铸铁的静态腐蚀深度和耐蚀性进行预测研究。结果表明:RBF神经网络预测RE-Ni-Cu合金铸铁在浓碱液中的静态腐蚀性能可行且有效,能较好地反映主要合金成分、腐蚀时间、碱液温度与静态腐蚀深度之间的非线性映射关系;当RBF网络的扩展系数为0.5,静态腐蚀深度的网络预测值与实测值之间的相对误差最小,且耐蚀等级和耐蚀评价的准确率均达到100%。
关键词:RBF神经网络;合金铸铁;腐蚀深度;静态腐蚀;预测;