一种基于综合引导的偏好多目标优化算法

来源期刊:中南大学学报(自然科学版)2016年第9期

论文作者:戴永彬

文章页码:3072 - 3079

关键词:多目标优化;偏好区域;粒子群;综合引导

Key words:multi-objective optimization; preference regions; particle swarm; integrated guidance

摘    要:针对多目标优化的偏好问题,提出一种综合引导的偏好多目标优化粒子群算法(IG-MOPSO)。该算法的核心思想是将多目标优化策略的参考点算法和参考区域算法结合在一起。在参考点移动的过程中,动态调整参考区域面积。经过每一次的迭代计算,该算法可不断调整参考点从而获得更优的偏好解,同时借助参数d控制偏好的范围。另外,采用g-支配改进全局最优粒子的选取方法,提高搜索的有效性。研究结果表明:本文提出的算法是可行、有效的。

Abstract: A preference multi-objective particle swarm optimization algorithm (IG-MOPSO) with integrated guidance for multi-objective optimization problem was proposed. The main ideas of the algorithm were to combine the notion of reference point with reference region. With the movement of reference points, the area of the reference regions was adjusted dynamically. The reference point was modified by the algorithm to refine the preferences through every iterative calculation, and the parameter d was set to control the reference range simultaneously. By means of g-dominance, the choosing method of best modes of particle swarm optimization was improved, and the effectiveness of the search was also enhanced. The results show that the presented algorithm has good feasibility and effectiveness.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号