简介概要

一种新型模拟退火神经网络及其应用

来源期刊:控制工程2006年第6期

论文作者:肖玉刚

文章页码:550 - 1108

关键词:神经网络;模拟退火算法;冷却进度表;Powell算法;

摘    要:针对训练神经网络权值的BP算法容易陷于局部最小值点的问题,提出了带自适应冷却进度表的模拟退火算法与Powell算法构成新型混合算法,用该算法训练网络的权值。冷却进度表中主要参数是模拟退火算法的控制参数T的初值T0和T的衰减函数。把整个迭代过程划分为若干阶段,在每个阶段结束时,依据网络模型误差自适应地修正下阶段的T0(回火温度)、T的衰减函数中的参数和迭代步长初值。仿真结果表明,上述混合算法具有很强的全局和局部搜索能力,其性能优于BP算法;该算法在油田系统建模问题中的成功应用也表明了该方案的有效性。

详情信息展示

一种新型模拟退火神经网络及其应用

肖玉刚

天津大学管理学院 天津300072

摘 要:针对训练神经网络权值的BP算法容易陷于局部最小值点的问题,提出了带自适应冷却进度表的模拟退火算法与Powell算法构成新型混合算法,用该算法训练网络的权值。冷却进度表中主要参数是模拟退火算法的控制参数T的初值T0和T的衰减函数。把整个迭代过程划分为若干阶段,在每个阶段结束时,依据网络模型误差自适应地修正下阶段的T0(回火温度)、T的衰减函数中的参数和迭代步长初值。仿真结果表明,上述混合算法具有很强的全局和局部搜索能力,其性能优于BP算法;该算法在油田系统建模问题中的成功应用也表明了该方案的有效性。

关键词:神经网络;模拟退火算法;冷却进度表;Powell算法;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号