测量数据的曲线曲面拟合算法
来源期刊:东北大学学报(自然科学版)2021年第3期
论文作者:顾天奇 罗祖德 胡晨捷 林述温
文章页码:408 - 413
关键词:曲线曲面拟合;粗大误差;移动最小二乘法;最小截平方法;局部拟合;
摘 要:移动最小二乘法由于其良好的逼近性能而广泛用于曲线曲面拟合,但处理含有粗大误差的数据时,拟合结果极不稳定.为了减少粗大误差对拟合精度的影响,本文提出一种移动最小截平方法,该方法在支持域内引入最小截平方法代替最小二乘法,在所有节点当中选出剔除异常值的最优节点组合,确定局部拟合系数.该方法不需要人为地分配权重或设定阈值,可避免主观操作带来的影响.数值模拟和实验数据处理表明,移动最小截平方法能有效地处理测量数据中的粗大误差,拟合结果明显优于移动最小二乘法,具有良好的拟合精度和鲁棒性.
顾天奇,罗祖德,胡晨捷,林述温
福州大学机械工程及自动化学院
摘 要:移动最小二乘法由于其良好的逼近性能而广泛用于曲线曲面拟合,但处理含有粗大误差的数据时,拟合结果极不稳定.为了减少粗大误差对拟合精度的影响,本文提出一种移动最小截平方法,该方法在支持域内引入最小截平方法代替最小二乘法,在所有节点当中选出剔除异常值的最优节点组合,确定局部拟合系数.该方法不需要人为地分配权重或设定阈值,可避免主观操作带来的影响.数值模拟和实验数据处理表明,移动最小截平方法能有效地处理测量数据中的粗大误差,拟合结果明显优于移动最小二乘法,具有良好的拟合精度和鲁棒性.
关键词:曲线曲面拟合;粗大误差;移动最小二乘法;最小截平方法;局部拟合;