简介概要

基于粒子群模糊聚类算法的边缘检测仿真

来源期刊:东北大学学报(自然科学版)2008年第8期

论文作者:石振刚 高立群 葛雯

文章页码:1083 - 1086

关键词:边缘检测;模糊聚类;粒子群优化;特征向量;噪声图像;

摘    要:将粒子群优化算法与模糊C-均值(FCM)聚类算法相结合,并应用于图像边缘检测,以期解决标准FCM算法在图像边缘检测中对初始值敏感及容易陷入局部极小的两大缺陷.首先,基于数学测度概念构造一个描述边缘点信息的特征向量,将灰度图像中的每一个像素点看成是一个数据样本,将该点灰度值处理后构成其边缘点信息特征向量,形成具有三维特征的数据集;然后对这个数据集应用粒子群模糊聚类算法进行分类,自适应地检测出图像的边缘点,达到提取边缘的目的.仿真实验表明,此算法具有良好的抗噪性能,能够得到较好的边缘效果,提高了边缘定位的精度.

详情信息展示

基于粒子群模糊聚类算法的边缘检测仿真

石振刚,高立群,葛雯

摘 要:将粒子群优化算法与模糊C-均值(FCM)聚类算法相结合,并应用于图像边缘检测,以期解决标准FCM算法在图像边缘检测中对初始值敏感及容易陷入局部极小的两大缺陷.首先,基于数学测度概念构造一个描述边缘点信息的特征向量,将灰度图像中的每一个像素点看成是一个数据样本,将该点灰度值处理后构成其边缘点信息特征向量,形成具有三维特征的数据集;然后对这个数据集应用粒子群模糊聚类算法进行分类,自适应地检测出图像的边缘点,达到提取边缘的目的.仿真实验表明,此算法具有良好的抗噪性能,能够得到较好的边缘效果,提高了边缘定位的精度.

关键词:边缘检测;模糊聚类;粒子群优化;特征向量;噪声图像;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号