简介概要

概率神经网络在地震岩性反演中的应用

来源期刊:煤田地质与勘探2012年第4期

论文作者:彭刘亚 崔若飞 张亚兵

文章页码:63 - 135

关键词:概率神经网络;岩性反演;孔隙度;波阻抗;

摘    要:卧龙湖煤矿北二采区岩浆岩侵入8煤层的现象较为严重,同时该区煤层中构造煤比较发育,瓦斯富集问题较为突出。利用三维地震资料、测井曲线进行约束反演得到的波阻抗作为外部属性,并使用step-wise属性选择法确定合适数目的地震属性,利用概率神经网络技术(PNN)对该区进行孔隙度预测反演。孔隙度反演结果与波阻抗反演结果的对比表明:孔隙度较波阻抗对于识别瓦斯富集带具有更高的分辨能力;概率神经网络具有高稳定性、计算精度高等特点,可作为研究构造煤发育和瓦斯赋存的有效手段。

详情信息展示

概率神经网络在地震岩性反演中的应用

彭刘亚,崔若飞,张亚兵

中国矿业大学资源与地球科学学院

摘 要:卧龙湖煤矿北二采区岩浆岩侵入8煤层的现象较为严重,同时该区煤层中构造煤比较发育,瓦斯富集问题较为突出。利用三维地震资料、测井曲线进行约束反演得到的波阻抗作为外部属性,并使用step-wise属性选择法确定合适数目的地震属性,利用概率神经网络技术(PNN)对该区进行孔隙度预测反演。孔隙度反演结果与波阻抗反演结果的对比表明:孔隙度较波阻抗对于识别瓦斯富集带具有更高的分辨能力;概率神经网络具有高稳定性、计算精度高等特点,可作为研究构造煤发育和瓦斯赋存的有效手段。

关键词:概率神经网络;岩性反演;孔隙度;波阻抗;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号