简介概要

基于GA的遥感图像目标SVM自动识别

来源期刊:控制与决策2005年第11期

论文作者:郑春红 焦李成 郑贵文

关键词:支撑矢量机;遗传算法;模型选择;遥感图像;目标识别;

摘    要:为了高效合理地确定支持矢量机(SVM)的参数,使其对复杂的二值遥感图像目标进行自动识别,采用实值编码遗传算法来实现SVM模型参数的自动选择.与穷举搜索的留一法及随机试凑法相比,采用遗传算法的SVM模型参数选择更简单、更易于实现,并使SVM具有更好的推广能力.二值遥感图像目标的分类识别结果表明,该方法不但可以提高分类识别率,而且显著地缩短了SVM的训练时间.

详情信息展示

基于GA的遥感图像目标SVM自动识别

郑春红,焦李成,郑贵文

摘 要:为了高效合理地确定支持矢量机(SVM)的参数,使其对复杂的二值遥感图像目标进行自动识别,采用实值编码遗传算法来实现SVM模型参数的自动选择.与穷举搜索的留一法及随机试凑法相比,采用遗传算法的SVM模型参数选择更简单、更易于实现,并使SVM具有更好的推广能力.二值遥感图像目标的分类识别结果表明,该方法不但可以提高分类识别率,而且显著地缩短了SVM的训练时间.

关键词:支撑矢量机;遗传算法;模型选择;遥感图像;目标识别;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号