简介概要

支持向量机中的核参数选择问题

来源期刊:控制工程2005年第4期

论文作者:齐志泉 田英杰 徐志洁

文章页码:379 - 381

关键词:支持向量机(SVM);核;混合遗传算法;LOO上界;

摘    要:核函数中的参数选择是支持向量机中的一个很重要的问题,它直接影响模型的推广能力。通过最速下降法求LOO上界的极小点来确定核参数是一种新的核参数选择方法。由于该方法易陷入局部最优解,提出了一种基于混合遗传算法求解LOO上界极小点的核参数选择方法。实验证明,通过该方法选择出来的核参数能够提高分类精度,具有实用性。

详情信息展示

支持向量机中的核参数选择问题

齐志泉,田英杰,徐志洁

摘 要:核函数中的参数选择是支持向量机中的一个很重要的问题,它直接影响模型的推广能力。通过最速下降法求LOO上界的极小点来确定核参数是一种新的核参数选择方法。由于该方法易陷入局部最优解,提出了一种基于混合遗传算法求解LOO上界极小点的核参数选择方法。实验证明,通过该方法选择出来的核参数能够提高分类精度,具有实用性。

关键词:支持向量机(SVM);核;混合遗传算法;LOO上界;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号