简介概要

基于主成分分析的BP神经网络在稀土价格预测的应用:以氧化镝为例

来源期刊:中国矿业2020年第6期

论文作者:边璐 肖月淑 张江朋

文章页码:56 - 63

关键词:稀土资源;主成分分析;多因素PCA-BP组合预测;氧化镝;

摘    要:稀土是我国重要的战略资源,对其价格趋势的准确预测意义重大。本文从稀土资源价格影响因素出发,设计并采用基于主成分分析的BP神经网络(PCA-BP)组合模型对稀土产品价格进行预测。鉴于影响稀土产品价格波动的因素众多,利用主成分分析(PCA)消除稀土价格预测影响因素之间存在的冗余信息,降低BP神经网络输入数据的维数,提高预测精度。本文以氧化镝价格为预测对象,选取2010年1月~2018年2月的月度数据,构建多因素PCA-BP组合模型。预测结果表明多因素PCA-BP组合模型在仿真能力、误差水平、收敛精度等方面优于主流的神经网络模型,能更加准确地预测氧化镝价格走势。

详情信息展示

基于主成分分析的BP神经网络在稀土价格预测的应用:以氧化镝为例

边璐,肖月淑,张江朋

内蒙古科技大学经济与管理学院

摘 要:稀土是我国重要的战略资源,对其价格趋势的准确预测意义重大。本文从稀土资源价格影响因素出发,设计并采用基于主成分分析的BP神经网络(PCA-BP)组合模型对稀土产品价格进行预测。鉴于影响稀土产品价格波动的因素众多,利用主成分分析(PCA)消除稀土价格预测影响因素之间存在的冗余信息,降低BP神经网络输入数据的维数,提高预测精度。本文以氧化镝价格为预测对象,选取2010年1月~2018年2月的月度数据,构建多因素PCA-BP组合模型。预测结果表明多因素PCA-BP组合模型在仿真能力、误差水平、收敛精度等方面优于主流的神经网络模型,能更加准确地预测氧化镝价格走势。

关键词:稀土资源;主成分分析;多因素PCA-BP组合预测;氧化镝;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号