基于主成分分析的BP神经网络在稀土价格预测的应用:以氧化镝为例
来源期刊:中国矿业2020年第6期
论文作者:边璐 肖月淑 张江朋
文章页码:56 - 63
关键词:稀土资源;主成分分析;多因素PCA-BP组合预测;氧化镝;
摘 要:稀土是我国重要的战略资源,对其价格趋势的准确预测意义重大。本文从稀土资源价格影响因素出发,设计并采用基于主成分分析的BP神经网络(PCA-BP)组合模型对稀土产品价格进行预测。鉴于影响稀土产品价格波动的因素众多,利用主成分分析(PCA)消除稀土价格预测影响因素之间存在的冗余信息,降低BP神经网络输入数据的维数,提高预测精度。本文以氧化镝价格为预测对象,选取2010年1月~2018年2月的月度数据,构建多因素PCA-BP组合模型。预测结果表明多因素PCA-BP组合模型在仿真能力、误差水平、收敛精度等方面优于主流的神经网络模型,能更加准确地预测氧化镝价格走势。
边璐,肖月淑,张江朋
内蒙古科技大学经济与管理学院
摘 要:稀土是我国重要的战略资源,对其价格趋势的准确预测意义重大。本文从稀土资源价格影响因素出发,设计并采用基于主成分分析的BP神经网络(PCA-BP)组合模型对稀土产品价格进行预测。鉴于影响稀土产品价格波动的因素众多,利用主成分分析(PCA)消除稀土价格预测影响因素之间存在的冗余信息,降低BP神经网络输入数据的维数,提高预测精度。本文以氧化镝价格为预测对象,选取2010年1月~2018年2月的月度数据,构建多因素PCA-BP组合模型。预测结果表明多因素PCA-BP组合模型在仿真能力、误差水平、收敛精度等方面优于主流的神经网络模型,能更加准确地预测氧化镝价格走势。
关键词:稀土资源;主成分分析;多因素PCA-BP组合预测;氧化镝;