基于IPSO-RELM转炉冶炼终点锰含量预测模型
来源期刊:工程科学学报2019年第8期
论文作者:张壮 曹玲玲 林文辉 孙建坤 冯小明 刘青
文章页码:1052 - 1060
关键词:转炉;终点锰含量;改进粒子群算法;极限学习机;正则化极限学习机;预测模型;
摘 要:分析了影响转炉冶炼终点钢水中锰含量的因素,针对基于BP神经网络算法的转炉冶炼终点锰含量预测模型存在的收敛速度慢,预测精度低等问题,提出了一种基于极限学习机(ELM)算法建模的新思路,并引入正则化以及改进粒子群优化算法(IPSO),建立了基于改进粒子群算法优化的正则化极限学习机(IPSO-RELM)的转炉终点锰含量预测模型;应用国内某炼钢厂转炉实际生产数据对模型进行训练和验证,并与基于BP、ELM和RELM算法的三类模型进行比较.结果表明,采用IPSO-RELM方法构建的模型,锰含量预测误差在±0. 025%范围内的命中率达到94%,均方误差为2. 18×10-8,拟合优度R2为0. 72,上述三项指标均显著优于其他三类模型,此外,该模型还具有良好的泛化能力,对于转炉实际冶炼过程具有一定的指导意义.
张壮,曹玲玲,林文辉,孙建坤,冯小明,刘青
北京科技大学钢铁冶金新技术国家重点实验室新余钢铁集团有限公司
摘 要:分析了影响转炉冶炼终点钢水中锰含量的因素,针对基于BP神经网络算法的转炉冶炼终点锰含量预测模型存在的收敛速度慢,预测精度低等问题,提出了一种基于极限学习机(ELM)算法建模的新思路,并引入正则化以及改进粒子群优化算法(IPSO),建立了基于改进粒子群算法优化的正则化极限学习机(IPSO-RELM)的转炉终点锰含量预测模型;应用国内某炼钢厂转炉实际生产数据对模型进行训练和验证,并与基于BP、ELM和RELM算法的三类模型进行比较.结果表明,采用IPSO-RELM方法构建的模型,锰含量预测误差在±0. 025%范围内的命中率达到94%,均方误差为2. 18×10-8,拟合优度R2为0. 72,上述三项指标均显著优于其他三类模型,此外,该模型还具有良好的泛化能力,对于转炉实际冶炼过程具有一定的指导意义.
关键词:转炉;终点锰含量;改进粒子群算法;极限学习机;正则化极限学习机;预测模型;