Efficient fast mode decision using mode complexity for multi-view video coding
来源期刊:中南大学学报(英文版)2014年第11期
论文作者:WANG Feng-sui(王凤随) SHEN Qing-hong(沈庆宏) DU Si-dan(都思丹)
文章页码:4244 - 4253
Key words:multi-view video coding; mode decision; mode complexity; computational complexity
Abstract: The variable block-size motion estimation (ME) and disparity estimation (DE) are adopted in multi-view video coding (MVC) to achieve high coding efficiency. However, much higher computational complexity is also introduced in coding system, which hinders practical application of MVC. An efficient fast mode decision method using mode complexity is proposed to reduce the computational complexity. In the proposed method, mode complexity is firstly computed by using the spatial, temporal and inter-view correlation between the current macroblock (MB) and its neighboring MBs. Based on the observation that direct mode is highly possible to be the optimal mode, mode complexity is always checked in advance whether it is below a predefined threshold for providing an efficient early termination opportunity. If this early termination condition is not met, three mode types for the MBs are classified according to the value of mode complexity, i.e., simple mode, medium mode and complex mode, to speed up the encoding process by reducing the number of the variable block modes required to be checked. Furthermore, for simple and medium mode region, the rate distortion (RD) cost of mode 16×16 in the temporal prediction direction is compared with that of the disparity prediction direction, to determine in advance whether the optimal prediction direction is in the temporal prediction direction or not, for skipping unnecessary disparity estimation. Experimental results show that the proposed method is able to significantly reduce the computational load by 78.79% and the total bit rate by 0.07% on average, while only incurring a negligible loss of PSNR (about 0.04 dB on average), compared with the full mode decision (FMD) in the reference software of MVC.
WANG Feng-sui(王凤随)1, 2, SHEN Qing-hong(沈庆宏)1, DU Si-dan(都思丹)1
(1. School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China;
2. College of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China)
Abstract:The variable block-size motion estimation (ME) and disparity estimation (DE) are adopted in multi-view video coding (MVC) to achieve high coding efficiency. However, much higher computational complexity is also introduced in coding system, which hinders practical application of MVC. An efficient fast mode decision method using mode complexity is proposed to reduce the computational complexity. In the proposed method, mode complexity is firstly computed by using the spatial, temporal and inter-view correlation between the current macroblock (MB) and its neighboring MBs. Based on the observation that direct mode is highly possible to be the optimal mode, mode complexity is always checked in advance whether it is below a predefined threshold for providing an efficient early termination opportunity. If this early termination condition is not met, three mode types for the MBs are classified according to the value of mode complexity, i.e., simple mode, medium mode and complex mode, to speed up the encoding process by reducing the number of the variable block modes required to be checked. Furthermore, for simple and medium mode region, the rate distortion (RD) cost of mode 16×16 in the temporal prediction direction is compared with that of the disparity prediction direction, to determine in advance whether the optimal prediction direction is in the temporal prediction direction or not, for skipping unnecessary disparity estimation. Experimental results show that the proposed method is able to significantly reduce the computational load by 78.79% and the total bit rate by 0.07% on average, while only incurring a negligible loss of PSNR (about 0.04 dB on average), compared with the full mode decision (FMD) in the reference software of MVC.
Key words:multi-view video coding; mode decision; mode complexity; computational complexity