基于L-M算法BP神经网络的转炉炼钢终点磷含量预报
来源期刊:钢铁2011年第4期
论文作者:李长荣 赵浩文 谢祥 尹青
文章页码:23 - 25
关键词:BP神经网络; 终点磷含量; Levenberg-Marquardt算法; 预报模型
Key words:BP neural network; phosphorus content of end-point; Levenberg-Marquardt(LM) algorithm; predictive model
摘 要:转炉炼钢过程是一个非常复杂的物理化学变化过程,人工控制很难一次达到终点目标值,通常需要经过多次补吹才能出钢。通过研究影响转炉冶炼终点磷含量的主要因素,确定了影响转炉终点磷含量的参数,建立了基于Levenberg-Marquardt(LM)算法BP神经网络转炉终点磷含量的预报模型。结果表明:在预报误差目标精度为±0.002%内,命中率达到了90%。
Abstract: BOF steelmaking is a very complex physical chemistry process;it is hard to achieve the target value of end-point by manual control.Multiple reblowing operations were usually necessary to taping off.Based on analyzing the influence major factors of phosphorus end-point in converter,the dominative factors of prediction model of end-point for Conrerter smelting were fixed.A prediction model of end-point phosphorus content for BOF process is established based on Levenberg-Marquardt(LM) algorithm of BP neural network.The results show that the phosphorus content of end-point hitting rates could be reached 90% if the accuracy of target error were ±0.002%.
李长荣1,2,赵浩文1,谢祥3,尹青2
(1.贵州省贵阳市贵州大学材料与冶金学院
2.贵州省贵阳市贵州大学贵州省材料结构与强度重点实验室
3.水城钢铁集团炼钢厂,贵州六盘水 553028)
摘 要:转炉炼钢过程是一个非常复杂的物理化学变化过程,人工控制很难一次达到终点目标值,通常需要经过多次补吹才能出钢。通过研究影响转炉冶炼终点磷含量的主要因素,确定了影响转炉终点磷含量的参数,建立了基于Levenberg-Marquardt(LM)算法BP神经网络转炉终点磷含量的预报模型。结果表明:在预报误差目标精度为±0.002%内,命中率达到了90%。
关键词:BP神经网络; 终点磷含量; Levenberg-Marquardt算法; 预报模型