基于集成固有时间尺度分解和谱峭度的滚动轴承故障检测

来源期刊:中南大学学报(自然科学版)2016年第7期

论文作者:向玲 鄢小安

文章页码:2273 - 2281

关键词:固有时间尺度分解;谱峭度;K-L散度;滚动轴承;故障检测

Key words:intrinsic time-scale decomposition; spectral kurtosis; K-L divergence; rolling bearing; fault detection

摘    要:针对固有时间尺度分解(ITD)方法中固有旋转分量存在局部波动的问题,提出一种集成固有时间尺度分解,将其结合谱峭度法,提高轴承故障检测的准确度。首先运用3次样条插值拟合基线控制点,实现振动信号的自适应频带划分,获得若干个固有旋转分量;然后根据K-L散度准则选取真实分量进行信号重构,使用谱峭度法确定带通滤波器的最优参数;最后分析滤波处理结果的包络谱,得到振动信号的特征信息。研究结果表明:与经验模式分解和单纯包络谱分析方法相比,采用集成固有时间尺度分解和谱峭度的包络方法(EITD-SK)能更好地提取滚动轴承故障特征信息,实现轴承故障的准确检测,结果与实际相符。

Abstract: Aimed at the problems of local fluctuations of proper rotation component in intrinsic time-scale decomposition (ITD), an ensemble intrinsic time-scale decomposition (EITD) method was proposed. Combining this method and spectral kurtosis (EITD-SK), the precision of bearing fault detection was improved. Firstly, the frequency band of vibration signal was adaptively separated and several proper rotation components was achieved by using cubic spline interpolation to fit baseline control points. Then the real proper rotation components selected by K-L divergence criterion were used to reconstruct the faulty signal, and the optimal band-pass filter parameters were determined by using spectral kurtosis method. Finally, envelope spectrum of the filtered reconstruction signal was analyzed to obtain the characteristic information of the vibration signal. The results show that the proposed method (EITD-SK) performs better in extracting the bearing fault feature information and detecting the bearing fault type than the empirical mode decomposition (EMD) and pure spectral envelope analysis. The analysis result can better agree with the practice.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号