简介概要

基于多输出极限学习机的快速一致性分类器

来源期刊:控制与决策2019年第3期

论文作者:王迪 王萍 石君志

文章页码:555 - 560

关键词:一致性预测;刀切法一致性预测;一致性分类器;神经网络;多输出极限学习机;快速学习;

摘    要:一致性分类器是建立在一致性预测基础上的分类器,其输出结果具有很高的可靠性,但由于计算框架的限制,学习的时间往往较长.为了加快学习速度,首次将一致性预测与多输出极限学习机相结合,提出基于两者的快速一致性分类算法.该算法利用了极限学习机,能够快速计算样本标签的留一交叉估计的特性,极大地加快了学习速度.算法复杂度分析表明,所提算法的计算复杂度与多输出极限学习机的算法复杂度相同,该算法继承了一致性预测的可靠性特征,即预测的错误率能够被显著性水平参数所控制.在10个公共数据集上的对比实验表明,所提算法具有极快的计算速度,且与其他常用一致性分类器相比,该算法的平均预测标签个数在某些数据集上更少,预测结果更有效.

详情信息展示

基于多输出极限学习机的快速一致性分类器

王迪,王萍,石君志

天津大学电气自动化与信息工程学院

摘 要:一致性分类器是建立在一致性预测基础上的分类器,其输出结果具有很高的可靠性,但由于计算框架的限制,学习的时间往往较长.为了加快学习速度,首次将一致性预测与多输出极限学习机相结合,提出基于两者的快速一致性分类算法.该算法利用了极限学习机,能够快速计算样本标签的留一交叉估计的特性,极大地加快了学习速度.算法复杂度分析表明,所提算法的计算复杂度与多输出极限学习机的算法复杂度相同,该算法继承了一致性预测的可靠性特征,即预测的错误率能够被显著性水平参数所控制.在10个公共数据集上的对比实验表明,所提算法具有极快的计算速度,且与其他常用一致性分类器相比,该算法的平均预测标签个数在某些数据集上更少,预测结果更有效.

关键词:一致性预测;刀切法一致性预测;一致性分类器;神经网络;多输出极限学习机;快速学习;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号