简介概要

Performances and failure mechanism of semi-metallic friction materials doping rare earths

来源期刊:JOURNAL OF RARE EARTHS2010年第S1期

论文作者:许越 王晓静 白婧 卢立国

文章页码:464 - 468

摘    要:In order to improve performance of semi-metallic friction material,the specimens doped with rare earth(cerous nitrate) were prepared.The effects of rare earth(cerous nitrate) and post heat treatment on properties of friction materials were discussed,and failure mechanism of friction materials was also analyzed.The result showed that the existing of cerous nitrate could stabilize friction coefficient,lower wear rate and increase impact strength,and when the content of the cerous nitrate was 3.0 wt.%,the semi-metallic friction material possessed optimal performances.The different post heat treatments had an influence on the friction coefficient,wear rate and linear thermal expansion coefficient of semi-metallic friction material.The worn surface and fractured surface were observed and analyzed by scanning electronic microscopy(SEM).It was identified that the semi-metallic friction materials doped with cerous nitrate acted abrasive wear and adhesive wear at the low temperature,and abrasive wear,adhesive wear and fatigue wear of materials appeared at the high temperature.The fracture of materials might be the result of matrix cracking interacting with interface separation.

详情信息展示

Performances and failure mechanism of semi-metallic friction materials doping rare earths

许越,王晓静,白婧,卢立国

School of Chemistry and Environment,Beijing University of Aeronautics and Astronautics

摘 要:In order to improve performance of semi-metallic friction material,the specimens doped with rare earth(cerous nitrate) were prepared.The effects of rare earth(cerous nitrate) and post heat treatment on properties of friction materials were discussed,and failure mechanism of friction materials was also analyzed.The result showed that the existing of cerous nitrate could stabilize friction coefficient,lower wear rate and increase impact strength,and when the content of the cerous nitrate was 3.0 wt.%,the semi-metallic friction material possessed optimal performances.The different post heat treatments had an influence on the friction coefficient,wear rate and linear thermal expansion coefficient of semi-metallic friction material.The worn surface and fractured surface were observed and analyzed by scanning electronic microscopy(SEM).It was identified that the semi-metallic friction materials doped with cerous nitrate acted abrasive wear and adhesive wear at the low temperature,and abrasive wear,adhesive wear and fatigue wear of materials appeared at the high temperature.The fracture of materials might be the result of matrix cracking interacting with interface separation.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号