Sub-10 nm lanthanide-doped SrFCl nanoprobes:Controlled synthesis,optical properties and bioimaging
来源期刊:JOURNAL OF RARE EARTHS2019年第7期
论文作者:Jiaojiao Wei Wei Lian Wei Zheng Xiaoying Shang Meiran Zhang Tao Dai Xueyuan Chen
文章页码:691 - 698
摘 要:Alkaline-earth dihalide nanocrystals(NCs) such as SrFCl, owing to their high chemical stability and low phonon energy, are excellent host materials for lanthanide(Ln3+) doping to achieve desirable optical properties for various bioapplications, Herein, we report a novel strategy for the synthesis of sub-10 nm Ln3+-doped SrFCl NCs with efficient upconverting and downshifting luminescence through a facile onestep hot-injection method. Utilizing the temperature-dependent upconverting luminescence(UCL) from the thermally coupled 2H11/2 and 4S3/2 levels of Er3+, we showed the potential of SrFCl:Yb,Er NCs as sensitive UCL nanoprobes for non-contact thermal sensing with a maximum detection sensitivity of 0.0066 K-1, which is among the highest values for thermal sensing based on Er3+-activated UCL nanoprobes. Furthermore, by employing the intense downshifting luminescence from Tb3+ and Eu3+, we demonstrated the successful use of biotinylated SrFCl:Ce,Tb and SrFCl:Eu3+ nanoprobes for biotin receptor-targeted cancer cell imaging, thus revealing the great promise of SrFCl:Ln3+ nanoprobes for versatile bioapplications.
Jiaojiao Wei1,2,Wei Lian1,2,Wei Zheng1,2,Xiaoying Shang2,Meiran Zhang2,Tao Dai2,Xueyuan Chen1,2
1. College of Chemistry, Fuzhou University2. CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
摘 要:Alkaline-earth dihalide nanocrystals(NCs) such as SrFCl, owing to their high chemical stability and low phonon energy, are excellent host materials for lanthanide(Ln3+) doping to achieve desirable optical properties for various bioapplications, Herein, we report a novel strategy for the synthesis of sub-10 nm Ln3+-doped SrFCl NCs with efficient upconverting and downshifting luminescence through a facile onestep hot-injection method. Utilizing the temperature-dependent upconverting luminescence(UCL) from the thermally coupled 2H11/2 and 4S3/2 levels of Er3+, we showed the potential of SrFCl:Yb,Er NCs as sensitive UCL nanoprobes for non-contact thermal sensing with a maximum detection sensitivity of 0.0066 K-1, which is among the highest values for thermal sensing based on Er3+-activated UCL nanoprobes. Furthermore, by employing the intense downshifting luminescence from Tb3+ and Eu3+, we demonstrated the successful use of biotinylated SrFCl:Ce,Tb and SrFCl:Eu3+ nanoprobes for biotin receptor-targeted cancer cell imaging, thus revealing the great promise of SrFCl:Ln3+ nanoprobes for versatile bioapplications.
关键词: