基于2D理论的点对点综合预测迭代学习控制
来源期刊:控制与决策2018年第3期
论文作者:洪英东 熊智华 江永亨 叶昊
文章页码:431 - 438
关键词:迭代学习控制;2D系统理论;点对点跟踪;轨迹更新;预测控制;时变模型;
摘 要:基于二维系统综合预测迭代学习控制(2D-IPILC)方法,结合轨迹更新策略研究点对点跟踪问题的控制算法.该算法既能够充分利用点对点问题在非跟踪点的自由度,也可以通过引入模型预测控制来提高时间轴的抗干扰能力.由于轨迹更新中引入时变参数,该2D模型为时变2D模型,因此分析状态转移矩阵特性和系统全响应,进而采用2D理论分析算法的收敛性和收敛条件,并分析参数对控制效果的影响.相比固定轨迹算法,该算法的收敛速度更快,稳定性比直接型优化算法更好.最后通过仿真实例验证了所提出算法的效果.
洪英东,熊智华,江永亨,叶昊
清华大学自动化系
摘 要:基于二维系统综合预测迭代学习控制(2D-IPILC)方法,结合轨迹更新策略研究点对点跟踪问题的控制算法.该算法既能够充分利用点对点问题在非跟踪点的自由度,也可以通过引入模型预测控制来提高时间轴的抗干扰能力.由于轨迹更新中引入时变参数,该2D模型为时变2D模型,因此分析状态转移矩阵特性和系统全响应,进而采用2D理论分析算法的收敛性和收敛条件,并分析参数对控制效果的影响.相比固定轨迹算法,该算法的收敛速度更快,稳定性比直接型优化算法更好.最后通过仿真实例验证了所提出算法的效果.
关键词:迭代学习控制;2D系统理论;点对点跟踪;轨迹更新;预测控制;时变模型;